POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Study of Effect of Polar Groups on the Discharge of Polypropylene Monomolecular Chains Along the Surface Under External Electric Field |
LI Yasha*, ZENG Yuekai, ZHAO Guanghui, TIAN Ze, WANG Lumin, WU Diao
|
College of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China |
|
|
Abstract Polypropylene is a type of insulating material with excellent performance, which has received significant attention in the field of high-voltage cable insulation. However, its insulating properties decrease significantly after aging, particularly in conjunction with the harsh actual operating environment. This can result in the phenomenon of surface discharge occurring from time to time. In order to investigate the impact of polar groups on the along-surface discharge characteristics of polypropylene at the microscopic level, this paper employs a microscopic analysis of the aforementioned parameters, including the geometrical structure, orbital energy level, density of states, depth of traps, and excited states of different polypropylene molecular chains under the electric field, based on the density functional theory. The results demonstrate that the introduction of polar groups leads to an increase in the degree of curling of the molecular chain, an elevation in the dipole moment, and the formation of a polarized charge on the surface of the material. The depth of the molecular traps is increased by the action of the electric field, with those containing polar groups having a smaller depth, which is favourable for electron de-trapping and increases the number of discharges. The electrophilic activity of the polar group region renders the trapped electrons relatively active, and the accumulated electrons in the region during the process of along-surface discharge. The strong activity will promote the development of electron avalanche. Molecules containing polar groups will experience a significant reduction in excitation energy, with the polar group region becoming the main place of electronic excitation and counter-excitation. In the process of electron and hole composite emission photons, the formation of a luminescence centre will accelerate material ageing, and the formation of space photoionisation in the air gap on the surface of the material will increase the probability of along-surface discharges.
|
Published: 10 July 2025
Online: 2025-07-21
|
|
|
|
1 Zhou Xiaoxin, Lu Zongxiang, Liu Yingmei, et al.Chinese Journal of Electrical Engineering, 2014, 34(29), 4999 (in Chinese). 周孝信, 鲁宗相, 刘应梅, 等. 中国电机工程学报, 2014, 34(29), 4999. 2 He Jinliang, Peng Lin, Zhou Yao.High Voltage Technology, 2017, 43(2), 337 (in Chinese). 何金良, 彭琳, 周垚. 高电压技术, 2017, 43(2), 337. 3 Tazawa S.The Transaction of the Institute of Electrical Enginneers of Japan B, 2003, 123(3), 265. 4 Huang Xingyi, Zhang Jun, Jiang Pingkai.High Voltage Technology, 2018, 44(5), 1377 (in Chinese). 黄兴溢, 张军, 江平开. 高电压技术, 2018, 44(5), 1377. 5 Zhou Y, Hu J, Dang B, et al.IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3), 1380. 6 Hosier I L, Cozzarini L, Vaughan A S, et al.Journal of Physics:Confe-rence Series, 2009, 183(1), 012015. 7 Zha J W, Wu Y H, Wang S J, et al.IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4), 2337. 8 Yang Rui, Liu Ying, Yu Jian.Polymer Bulletin, 2011(4), 68 (in Chinese). 杨睿, 刘颖, 于建. 高分子通报, 2011(4), 68. 9 Fan Linzhen, Li Qi, Yuan Hao, et al.Chinese Journal of Electrical Engineering, 2022, 42(11), 4227 (in Chinese). 樊林禛, 李琦, 袁浩, 等. 中国电机工程学报, 2022, 42(11), 4227. 10 Zhao Peng, Ouyang Benhong, Huang Kaiwen, et al.High Voltage Technology, 2022, 48(7), 2642 (in Chinese). 赵鹏, 欧阳本红, 黄凯文, 等. 高电压技术, 2022, 48(7), 2642. 11 Couderc H, Fréchette M, David E. In:IEEE Electrical Insulation Confe-rence(EIC). Seattle, USA, 2015, pp. 329. 12 Liao Ruijin, Xiang Min, Yuan Yuan, et al.High Voltage Technology, 2019, 45(3), 681 (in Chinese). 廖瑞金, 项敏, 袁媛, 等. 高电压技术, 2019, 45(3), 681. 13 Li Yasha, Zhao Guanghui, Zeng Yuekai, et al.Engineering Plastics Applications, 2024, 52(3), 13 (in Chinese). 李亚莎, 赵光辉, 曾跃凯, 等. 工程塑料应用, 2024, 52(3), 13. 14 Hou Shiying, Liang Jiaming, Yang Fan, et al.High Voltage Technology, 2023, 49(7), 3062 (in Chinese). 侯世英, 梁家鸣, 杨 帆, 等. 高电压技术, 2023, 49(7), 3062. 15 Li Yasha, Xia Yu, HuHuoran, et al.High Voltage Technology, 2022, 48(3), 839 (in Chinese). 李亚莎, 夏宇, 胡豁然, 等. 高电压技术, 2022, 48(3), 839. 16 Shen Yao, Liu Xingjie, Liang Ying, et al.Journal of Electrotechnology, DOI:10.19595/j.cnki.1000-6753.tces.231031 (in Chinese). 沈瑶, 刘兴杰, 梁英, 等. 电工技术学报, DOI:10.19595/j.cnki.1000-6753.tces.231031. 17 Li Yasha, Guo Yujie, Xia Yu, et al.Material Reports, 2024, 38(23), 259(in Chinese). 李亚莎, 郭玉杰, 夏宇, 等. 材料导报, 2024, 38(23), 259. 18 Li Jin, Zhao Renyong, Du Boxue, et al.High Voltage Technology, 2020, 46(3), 772 (in Chinese). 李进, 赵仁勇, 杜伯学, 等. 高电压技术, 2020, 46(3), 772. 19 Li Changyun, Fan Yanqi.Chinese Journal of Electrical Engineering, DOI:10.13334/j.0258-8013.pcsee.232486 (in Chinese). 李长云, 范延岐. 中国电机工程学报, DOI:10.13334/j.0258-8013.pcsee.232486 20 Vaibhav M, Antti J K.Nanomaterials, 2022, 12(19), 3379. 21 Frisch M J, Trucks G W, Schlegel H B, et al.Gaussian 09. Revision B. 01, Gaussian Inc, Wallingford, 2009. 22 Liao Ruijin, Lu Yuncai, Yang Lijun, et al.Materials, 2006(6), 51 (in Chinese). 廖瑞金, 陆云才, 杨丽君, 等. 绝缘材料, 2006(6), 51. 23 Li Lili, Zhang Xiaohong, Wang Yulong, et al.High Voltage Technology, 2017, 43(9), 2866 (in Chinese). 李丽丽, 张晓虹, 王玉龙, 等. 高电压技术, 2017, 43(9), 2866. 24 Li Yasha, Qu Cong, Xia Yu, et al.High Voltage Technology, 2023, 49(12), 4890 (in Chinese). 李亚莎, 瞿聪, 夏宇, 等. 高电压技术, 2023, 49(12), 4890. 25 Lu T, Chen F W.Journal of Molecular Graphics and Modelling, 2012, 38, 314. 26 Zhou Yihan, Li Zhiyuan, Cheng Lu, et al.High Voltage Technology, DOI:10.13336/j.1003-6520.hve.20231673 (in Chinese). 周一涵, 李志元, 程璐, 等. 高电压技术, DOI:10.13336/j.1003-6520.hve.20231673. 27 Zhang J, Lu T.Physical Chemical Physics, 2021, 23, 20323. 28 Wang Kai, Zhao Xindong, Zheng Haifeng, et al.Journal of Electrotech-nology, 2024, 39(1), 34 (in Chinese). 王凯, 赵新东, 郑海峰, 等. 电工技术学报, 2024, 39(1), 34. 29 Lu T, Chen F W.Journal of Computational Chemistry, 2012, 33(5), 580. 30 Song Jiale, Zhang Tianyin, Zhu Guangyu, et al.Power Capacitor and Reactive Power Compensation, 2024, 45(1), 83 (in Chinese). 宋家乐, 张添胤, 朱光宇, 等. 电力电容器与无功补偿, 2024, 45(1), 83. 31 Li Shengtao, Huang Qifeng, Sun Jian, et al.Physics Letters, 2010, 59(1), 422 (in Chinese). 李盛涛, 黄奇峰, 孙健, 等. 物理学报, 2010, 59(1), 422. |
|
|
|