POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on the Interactions of Hemicellulose-Cellulose in the Plant Cell Wall of Woody Biomass |
ZHANG Wanjing1,2,†, LU Yan1,†, SHANG Sainan1, PENG Feng1, BIAN Jing1,*
|
1 Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China 2 Instrumental Analysis Center, Huaqiao University, Xiamen 361021, Fujian, China |
|
|
Abstract Woody biomass is the most abundant and cost-effective renewable resource on earth. It has emerged as a hot research topic to use woody biomass as a raw material to generate biomass materials, energy and chemicals in the field of biomass conversion. Cellulose is the predominant constituent of the plant cell wall and its high-value conversion is closely related to the structure. The interaction between hemicellulose and cellulose plays an important role in the cellulose structure, and its further study can provide theoretical basis for the application of high-value cellulose. In this paper, the structure of cellulose and hemicellulose is briefly described. The effects of hemicellulose on the structure and properties of cellulose and the key factors affecting the interaction between hemicellulose and cellulose are summarized. Then, it mainly focuses on the main study methods of hemicellulose-cellulose interaction, including experimental adsorption, instrumental analysis, molecular simulation, mode-ling and genetic modification. The principles, characterization approaches as well as the advantages and disadvantages of each method are tho-roughly reviewed. Finally, the research strategy of hemicellulose-cellulose interactions and its prospect in practice are discussed in order to provide an important scientific basis for the utilization of woody biomass and genetic improvement and breeding of forest trees.
|
Published: 10 July 2025
Online: 2025-07-21
|
|
|
|
1 Arevalo-Gallegos A, Ahmad Z, Asgher M, et al.International Journal of Biological Macromolecules, 2017, 99, 308. 2 Liu Z C, Yi X D, Gao F X, et al.Acta Physico-Chimica Sinica, 2023, 39(1), 2112029 (in Chinese). 刘志成, 伊晓东, 高飞雪, 等. 物理化学学报, 2023, 39(1), 2112029. 3 Huang C, Li L G.Chinese Science Bulletin, 2016, 61(34), 3623 (in Chinese). 黄成, 李来庚. 科学通报, 2016, 61(34), 3623. 4 Li T, Chen C J, Brozena A H, et al.Nature, 2021, 590, 47. 5 Ling Z, Wang J J, Zhao J Y, et al.Bioresource Technology, 2023, 369, 128381. 6 Ciesielski P N, Pecha M B, Lattanzi A M, et al.ACS Sustainable Che-mistry & Engineering, 2020, 8, 3512. 7 Kang X, Kirui A, Dickwella W M C, et al.Nature Communications, 2019, 10, 347. 8 Terrett O M, Lyczakowski J J, Yu L, et al.Nature Communications, 2019, 10, 4978. 9 Pei J C.Lignocellulosic chemistry (fifth edition), China Light Industry Press, China, 2020, pp. 135 (in Chinese). 裴继诚. 植物纤维化学(第五版), 中国轻工业出版社, 2020, pp. 135. 10 Klemm D, Heublein B, Fink H P, et al.Angewandte Chemie International Edition, 2005, 44(22), 3358. 11 Yousefi H, Nishino T, Faezipour M, et al.Biomacromolecules, 2011, 12, 4080. 12 Jin K X, Jiang Z H, Liu X E, et al.Materials Reports, 2019, 33(17), 2997 (in Chinese). 金克霞, 江泽慧, 刘杏娥, 等. 材料导报, 2019, 33(17), 2997. 13 Peng F. Isolation, fractionation, characterization and modification of hemicellulose from agricultural and forestry biomass. Ph. D. Thesis, South China University of Technology, China, 2010 (in Chinese). 彭锋. 农林生物质半纤维素分离纯化、结构表征及化学改性的研究. 博士学位论文. 华南理工大学, 2010. 14 Liu X X. Preparation and performance regulation of xylan nanocomposite intelligence hydrogels. Ph. D. Thesis, South China University of Technology, China, 2019 (in Chinese). 刘昕昕. 木聚糖纳米复合智能水凝胶的制备及性能调控的研究. 博士学位论文. 华南理工大学, 2019. 15 Salmén L, Burgert I.Holzforschung, 2009, 63, 121. 16 Benselfelt T, Cranston E D, Ondaral S, et al.Biomacromolecules, 2016, 17, 2801. 17 Martínez-Sanz M, Lopez-Sanchez P, Gidley M J, et al.Cellulose, 2015, 22, 1541. 18 Penttila P A, Imai T, Sugiyama J.International Journal of Biological Macromolecules, 2017, 102, 111. 19 Shah R, Huang S, Pingali S V, et al.Biomacromolecules, 2019, 20, 893. 20 Navi P, Stanzl-Tschegg S.Holzforschung, 2009, 63, 186. 21 Zhang S Y. Chemical components effect on mechanical properties of wood cell wall. Ph. D. Thesis, Chinese Academy of Forestry, China, 2011 (in Chinese). 张双燕. 化学成分对木材细胞壁力学性能影响的研究. 博士学位论文, 中国林业科学研究院, 2011. 22 Berglund J, Mikkelsen D, Flanagan B M, et al.Nature Communications, 2020, 11, 4692. 23 Liu J, Chinga-Carrasco G, Cheng F, et al.Cellulose, 2016, 23, 3129. 24 Vilaseca F, Serra A, Kochumalayil J J.Carbohydrate Polymers, 2020, 229, 115540. 25 Qing Q, Wyman C E.Biotechnology for Biofuels, 2011, 4, 18. 26 Kumar R, Bhagia S, Smith M D, et al.Green Chemistry, 2018, 20, 921. 27 Iwata T, Indrarti L, Azuma J I.Cellulose, 1998, 5, 215. 28 Tokoh C, Takabe K, Fujita M, et al.Cellulose, 1998, 5(4), 249. 29 Whitney S E C, Brigham J E, Darke A H, et al.Carbohydrate Research, 1998, 307, 299. 30 Liu J Y, Wang H C, Yin Y, et al.Carbohydrate Polymers, 2012, 89(1), 158. 31 Khodayari A, Thielemans W, Hirn U, et al.Carbohydrate Polymers, 2021, 270, 118364. 32 Kohnke T, Ostlund A, Brelid H.Biomacromolecules, 2011, 12, 2633. 33 Park Y B, Lee C M, Kafle K, et al.Biomacromolecules, 2014, 15, 2718. 34 Villares A, Moreau C, Dammak A, et al.Soft Matter, 2015, 11, 6472. 35 Dammak A, Quemener B, Bonnin E, et al.Biomacromolecules, 2015, 16, 589. 36 Kishani S, Vilaplana F, Ruda M, et al.Biomacromolecules, 2020, 21, 772. 37 Chen M, Cathala B, Lahaye M.Carbohydrate Polymers, 2022, 296, 119994. 38 Gu J, Catchmark J M.Cellulose, 2013, 20, 1613. 39 Kong Y, Li L, Fu S.Journal of Materials Chemistry A, 2022, 10, 14451. 40 Kishani S, Benselfelt T, Wagberg L, et al.Journal of Colloid and Interface Science, 2021, 588, 485. 41 Pereira C S, Silveira R L, Dupree P, et al.Biomacromolecules, 2017, 18, 1311. 42 Wang X, Li K, Yang M, et al.Cellulose, 2016, 24, 35. 43 Berglund J, Kishani S, de Carvalho D M, et al.ACS Sustainable Chemistry & Engineering, 2020, 8, 10027. 44 Stimpson T C, Cathala B, Moreau C, et al.Biomacromolecules, 2020, 21, 3898. 45 Lin Q X, Liu X X, Li L B, et al.Biomass Chemical Engineering, 2022, 56(3), 47 (in Chinese). 林琦璇, 刘昕昕, 李理波, 等. 生物质化学工程, 2022, 56(3), 47. 46 Ren Z C, Sun H, Zhou X Y, et al.Composites Part A:Applied Science and Manufacturing, 2023, 164, 107310. 47 Lin D H, Lopez-Sanchez P, Gidley M J.Food Hydrocolloids, 2019, 96, 644. 48 Bromley J R, Busse-Wicher M, Tryfona T, et al.The Plant Journal, 2013, 74, 423. 49 Simmons T J, Mortimer J C, Bernardinelli O D, et al.Nature Communications, 2016, 7, 13902. 50 Zhang Y, Yu J, Wang X, et al.Science, 2021, 372, 706. 51 Lee C H, Teng Q, Zhong R Q, et al.Plant Signaling & Behavior, 2014, 9(2), 27797. 52 Moser C, Backlund H, Lindstrom M, et al.Nordic Pulp & Paper Research Journal, 2018, 33, 194. 53 Kabel M A, van den Borne H, Vincken J P, et al.Carbohydrate Polymers, 2007, 69, 94. 54 Lucenius J, Valle-Delgado J J, Parikka K, et al.Journal of Colloid and Interface Science, 2019, 555, 104. 55 Westbye P, Svanberg C, Gatenholm P.Holzforschung, 2006, 60, 143. 56 Pirich C L, de Freitas R A, Torresi R M, et al.Biosensors & Bioelectronics, 2017, 92, 47. 57 Sanchez-Osorno D M, Gomez-Maldonado D, Castro C, et al.Molecules, 2020, 25(18), 4041. 58 Zhang P Q, Ma Y Y, Cui M, et al.Biomacromolecules, 2020, 21, 1776. 59 Hu G, Heitmann J A, Rojas O J.The Journal of Physical Chemistry B, 2009, 113, 14761. 60 Eronen P, Österberg M, Heikkinen S, et al.Carbohydrate Polymers, 2011, 86, 1281. 61 Ralston J, Larson I, Rutland M W, et al.Pure and Applied Chemistry, 2005, 77, 2149. 62 Nypelo T, Laine C, Colson J, et al.Carbohydrate Polymers, 2017, 177, 126. 63 Dolan G K, Cartwright B, Bonilla M R, et al.Carbohydrate Polymers, 2019, 208, 97. 64 Huang J B. Molecular simulation study of pyrolysis mechanism of cellulose. Ph. D. Thesis, Chongqing University, China, 2010 (in Chinese). 黄金保. 纤维素快速热解机理的分子模拟研究. 博士学位论文, 重庆大学, 2010. 65 Miao Q. Process simulation and economic evaluation of bio-butanol from biomass straw. Master’s Thesis, Beijing University of Chemical Technology, China, 2017 (in Chinese). 苗奇. 生物质秸秆生产生物丁醇的过程模拟优化与经济评价. 硕士学位论文, 北京化工大学, 2017. 66 Falcoz-Vigne L, Ogawa Y, Molina-Boisseau S, et al.Cellulose, 2017, 24, 3725. 67 Berglund J, d’Ortoli T A, Vilaplana F, et al.The Plant Journal, 2016, 88, 56. 68 Busse-Wicher M, Gomes T C, Tryfona T, et al.The Plant Journal, 2014, 79, 492. 69 Zhang N, Li S, Xiong L M, et al.Modelling and Simulation in Materials Science and Engineering, 2015, 23(8), 085010. 70 Zhu X D, Du Y Y, Yuan X B, et al.Polymer Bulletin, 2022, 277(5), 17 (in Chinese). 朱晓东, 杜昀怡, 原续波, 等. 高分子通报, 2022, 277(5), 17. 71 Li Z F, Cao X, Zhu J, et al.Food Science, 2020, 41(19), 263 (in Chinese). 李昭锋, 曹潇, 朱杰, 等. 食品科学, 2020, 41(19), 263. 72 Kuo C H, Chen J H, Liou B K, et al.Food Hydrocolloids, 2016, 53, 98. 73 Zhang W J, Yang J Y, Lu Y, et al.Carbohydrate Polymers, 2023, 301, 120292. 74 Grantham N J, Wurman-Rodrich J, Terrett O M, et al.Nature Plants, 2017, 3, 859. |
|
|
|