INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Effect of Layer Stacking on the Thermoelectric Transport Properties of α-Graphyne |
JIANG Xuhao, LIU Yuanchao*, LI Zhuan, XU Yifan, LIU Xinhao, LI Zishuo
|
School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China |
|
|
Abstract Based on first-principles methods, the effects of layer stacking on the thermal and electrical transport properties of α-structured graphyne were investigated. The results demonstrate that Ab stacking is the most stable stacking configuration for graphyne. Layer stacking at room temperature enhances the thermal conductivity of graphyne, increasing it from 5.87 W/(m·K) to 17.43 W/(m·K), thereby significantly improving its thermal transport performance. In terms of electrical properties, layer stacking opens the Dirac cone of α-graphyne, creating a small band gap and substantially enhancing its electrical transport capacity. The power factor increases from 0.011 W/(m·K2) to 0.165 W/(m·K2). The enhancement in electrical properties completely offsets the negative impact brought by the increased thermal conductivity. At this point, the maximum thermoelectric figure of merit (ZTmax) reaches 2.834, resulting in a significant enhancement of the thermoelectric conversion efficiency. These findings indicate that modulating the thermal and electrical transport properties of graphyne through layer stacking can be an effective approach.
|
Published: 25 June 2025
Online: 2025-06-19
|
|
|
|
1 Miguel A, Álvaro C, Leyre C, et al. Energy Conversion and Management, 2020, 205, 112376. 2 Yang X X, Dai Z H, Zhao Y C, et al. Physical Chemistry Chemical Physics, 2018, 20, 15980. 3 Li G X, Li Y L, Liu H B, et al. Chemical Communications, 2010, 46, 3256. 4 Yu Z H, Zhang L F, Wu J, et al. Acta Physica Sinica, 2023, 72(5), 057301 (in Chinese). 余泽浩, 张力发, 吴靖, 等. 物理学报, 2023, 72(5), 057301. 5 Somayeh B. European Physical Journal B, 2016, 89, 1. 6 Kang B T, Lee J Y. Carbon, 2015, 84, 246. 7 Chi B Q, Liu Y, Xu J C, et al. Acta Physica Sinica, 2016, 65(13), 77(in Chinese). 迟宝倩, 刘轶, 徐京城, 等. 物理学报, 2016, 65(13), 77. 8 Jesse M, Mark L. Applied Physics Letters, 2013, 102(9), 093103. 9 Ho J H, Lu C L, Huang C C, et al. Physical Review B, 2006, 74, 085406. 10 Su L Z, Wang D Y, Wang S N, et al. Science, 2022, 375(6587), 1385. 11 Zeng J W, He X, Liang S J, et al. Nano Letters, 2018, 18(12), 7538. 12 Ohkubo I, Mori T. Chemistry of Materials, 2014, 26(8), 2532. 13 Ding T. Theoretical study on layer thickness and twisting control of two-dimensional SnTe thermoelectric properties. Master’s Thesis, Shenzhen University, China, 2020(in Chinese). 丁腾. 二维SnTe热电性能的层厚及扭转调控的理论研究. 硕士学位论文, 深圳大学, 2020. 14 Leenaerts O, Partoens B, Peeters F M. Applied Physics Letters, 2013, 103, 013105. 15 Kresse G, Hafner J. Physical Review B, 1993, 47(1), 558. 16 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787. 17 Blöchl P E, Jepsen O, Andersen O K. Physical Review B, 1994, 49(23), 16223. 18 Baroni S, De Gironcoli S, Dal C A, et al. Reviews of Modern Physics, 2001, 73(2), 515. 19 Li W, Carrete J, Katcho N A, et al. Computer Physics Communications, 2014, 185(6), 1747. 20 Huang S Z. Theoretical study on thermoelectric performance of two-dimensional materials containing chalcogen group elements. Ph.D. Thesis, University of Electronic Science and Technology of China, China, 2023 (in Chinese). 黄嗣昭. 含硫族元素二维材料热电性能的理论研究. 博士学位论文, 电子科技大学, 2023. 21 Bardeen J, Shockley W S. Physical Review, 1950, 80(1), 72. 22 Zhang Y, Pei Q, Wang C. Applied Physics Letters, 2012, 101(8), 081909. 23 Julia B, Tapash C. The Journal of Physical Chemistry C, 2011, 115, 24666. 24 Maznev A A, Wright O B. American Journal of Physics, 2014, 82(11), 1062. 25 Patrick K S, Simon R P, Pawel K. Physical Review B, 2002, 65, 144306. 26 Goldsmid H J, Sharp J W. Journal of Electronic Materials, 1999, 28, 869. 27 Kim H S, Gibbs Z M, Tang Y L, et al. APL Materials, 2015, 3(4), 041506. 28 Sun L, Jiang P H, Liu H J, et al. Carbon, 2015, 90, 255. 29 Roya M, Alireza K. Structural Chemistry, 2014, 25, 853. 30 Hang Y, Wu W Z, Yu J, et al. Chinese Physics B, 2016, 25(2), 023102. 31 Zhang Q, Song Q C, Wang X Y, et al. Energy & Environmental Science, 2018, 4, 933. |
|
|
|