METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Study on the Rolling Contact Fatigue Behaviors of Surface Carburized High-strength Bearing Steel |
YANG Hongbing1,2, SHAO Ziheng2, YAN Ying1, GU Jinbo3, CHI Hongxiao3, WANG Bin2,*, ZHANG Peng2, ZHANG Zhefeng2
|
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 Iron and Steel Research Institute Co., Ltd., Beijing 100081, China |
|
|
Abstract In recent years, surface carburizing technology has been widely used in the preparation process of bearing steel to get better rolling contact fatigue performance. In this work, the microstructure, microhardness, residual stress and rolling contact fatigue behaviors of high-strength stainless bearing steel treated by carburizing with two different process durations were studied. The results show that, the type, size, shape and content of carbides and the residual stress gradient obtained by the two carburizing treatments are very similar. The size and content of residual austenite obtained by the carburizing treatment for a longer time is significantly larger than those obtained by the carburizing treatment for a shorter time. The high-strength bearing steel treated with carburizing by the two processes would form a light etched region(LER) near the position of the maximum shear stress on the subsurface during the rolling contact fatigue process. The fatigue cracks originate in the light etched region, and then expand to the surface, finally form a spalling pit with a depth similar to the distance from the maximum shear stress to the surface. The high-strength bearing steel with a longer carburizing treatment time has a higher rolling contact fatigue life because of the relatively large residual austenite in the carburizing layer. The residual austenite can passivate and close the crack tip, thereby delaying the fatigue crack propagation and improving the fatigue crack propagation life.
|
Published: 25 June 2025
Online: 2025-06-19
|
|
|
|
1 Xia Z, Wu D, Zhang X, et al. International Journal of Fatigue, 2024, 179, 108042. 2 Yu F, Chen X P, Xu H F, et al. Acta Metallurgica Sinica, 2020, 56(4), 513(in Chinese). 俞峰, 陈兴品, 徐海峰, 等. 金属学报, 2020, 56(4), 513. 3 Chang Z, Jia Q, Yuan X, et al. Tribology International, 2017, 112, 68. 4 Vieillard C. International Journal of Fatigue, 2017, 96, 283. 5 Zheng K, Cao W Q, Yu F, et al. Iron and Steel, 2022, 57(7), 125(in Chinese). 郑凯, 曹文全, 俞峰, 等. 钢铁, 2022, 57(7), 125. 6 Yang C Y, Xu J H, Fu Y C, et al. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33(6), 706. 7 Paladugu M, Hyde R S. Wear, 2018, 406, 84. 8 Choi Y. International Journal of Fatigue, 2009, 31(10), 1517. 9 Wang G, Qu S, He R, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(12), 3161. 10 Tian Y, Song C W, Ge Q J, et al. Steel Rolling, 2019, 36(6), 1(in Chinese). 田勇, 宋超伟, 葛泉江, 等. 轧钢, 2019, 36(6), 1. 11 Yuan X H. Multi-scale strengthening-toughening mechanisms and fatigue resistance of high-alloy Cr-Co-Mo bearing steel. Ph. D. Thesis, Kunming University of Science and Technology, China, 2016(in Chinese). 袁晓虹. 高Cr-Co-Mo轴承钢强韧机制及抗疲劳特性的多尺度研究. 博士学位论文, 昆明理工大学, 2016. 12 Liu B, Yu M. Bearing, 2020(11), 65(in Chinese). 刘波, 于明. 轴承, 2020(11), 65. 13 Reséndiz-Calderon C D, Rodríguez-Castro G A, Meneses-Amador A, et al. Journal of Materials Engineering and Performance, 2017, 26, 5599. 14 Wang J G, Feng Z, Zhou J C. Materials Engineering, 1989(6), 35(in Chinese). 王介淦, 冯正, 周建初. 材料工程, 1989(6), 35. 15 Yang Z N, Ji Y L, Zhang F C, et al. Materials Science and Engineering:A, 2018, 725, 98. 16 Wu Z W, Yang M S, Zhao K Y. Surface Technology, 2021, 50(7), 283(in Chinese). 吴志伟, 杨卯生, 赵昆渝. 表面技术, 2021, 50(7), 283. 17 Wang D Y. Study on rolling contact fatigue and wear characteristics of GCr15 bearing steel. Master’s Thesis, University of Jinan, China, 2022(in Chinese). 王东跃. GCr15轴承钢的滚动接触疲劳及磨损特性研究. 硕士学位论文, 济南大学, 2022 18 Li X. Study on the contact fatigue properties of RV reducer crankshaft considering residual stress and inclusions. Master’s Thesis, Central South University, China, 2022(in Chinese). 李鑫. 考虑残余应力和夹杂物的RV减速器曲轴接触疲劳性能研究. 硕士学位论文, 中南大学, 2022. 19 Bhadeshia H K D H. ISIJ International, 2002, 42(9), 1059. 20 Mayer H R, Stanzl-Tschegg S E, Sawaki Y, et al. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18(9), 935. 21 Rogl G, Grytsiv A, Rogl P, et al. Acta Materialia, 2014, 76, 434. 22 Jiang G H, Li S X, Pu J B, et al. China Surface Engineering, 2022, 35(2), 12(in Chinese). 蒋港辉, 李淑欣, 蒲吉斌, 等. 中国表面工程, 2022, 35(2), 12. 23 Cao Z, Liu T, Yu F, et al. International Journal of Fatigue, 2020, 131, 105351. 24 Kanetani K, Mikami T, Ushioda K. ISIJ International, 2020, 60(8), 1774. 25 Cheng X, Gui X L, Gao G H. Materials Reports, 2023, 37(7), 120(in Chinese). 程瑄, 桂晓露, 高古辉. 材料导报, 2023, 37(7), 120. 26 Huang S, Zhang G Q, Wang M Q, et al. Journal of Iron and Steel Research, 2012, 24(4), 34(in Chinese). 黄帅, 张国强, 王毛球, 等. 钢铁研究学报, 2012, 24(4), 34. 27 Wang W, Liu H, Zhu C, et al. International Journal of Mechanical Sciences, 2019, 151, 263. 28 Creţu S S, Popinceanu N G. Wear, 1985, 105(2), 153. 29 Becker P C. Metals Technology, 1981, 8(1), 234. 30 Zhao P, Hadfield M, Wang Y, et al. Wear, 2006, 261(3-4), 390. 31 Bhattacharyya A, Subhash G, Arakere N. International journal of Fatigue, 2014, 59, 102. . 32 Fourel L, Noyel J P, Bossy E, et al. Tribology International, 2021, 164, 107224. 33 Yang W, Yao Q, Yu J, et al. International Journal of Rotating Machinery, 2023, 2023(1), 7622545. 34 Lu X, Zhou L, Lei C, et al. Journal of Materials Research and Technology, 2023, 24, 8955. 35 Shao Z, Zhu Y, Zhang P, et al. International Journal of Fatigue, 2024, 179, 108054. 36 Warhadpande A, Sadeghi F, Evans R D, et al. Tribology Transactions, 2012, 55(4), 422. 37 Moghaddam S M, Sadeghi F. Tribology Transactions, 2016, 59(6), 1142. 38 Ravi G, De Waele W, Nikolic K, et al. Tribology International, 2023, 180, 108290. 39 Shen Y, Moghadam S M, Sadeghi F, et al. International Journal of Fatigue, 2015, 75, 135. 40 Qian K. Hot Working Technology, 2010, 39(10), 60(in Chinese). 钱坤. 热加工工艺, 2010, 39(10), 60. |
|
|
|