INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Influence of Surface Roughness on MICP Surface Protection Performance of Mortar |
ZHANG Rui1, HOU Fuxing1, GAO Ruixiao1, RONG Hui2, WANG Jianyun1,*
|
1 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China 2 School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300192, China |
|
|
Abstract Microbially induced calcium carbonate precipitation (MICP) is regarded as a highly promising technology for surface protection of stone, cementitious materials, soil sites, etc. The surface protection efficiency based on MICP is not only influenced by microbial factors but also related to the surface properties of substrates. In this work, mortar specimens with different surface roughness were constructed using the acid etching method to investigate the effect of roughness on the properties of calcium carbonate and to evaluate the surface protection efficiency. The results indicated that the higher the surface roughness of the substrate, the greater the number of adhered bacteria, the higher the urease activity, and the increased yield of calcium carbonate. The mechanical interlocking strength between the substrate and calcium carbonate increased with the increase of surface roughness, leading to the improvement of calcium carbonate cohesion. This provided a theoretical basis for enhancing the surface protection efficiency of MICP.
|
Published:
Online: 2025-05-29
|
|
|
|
1 Chen Z F, Liu G F, Qin Y L, et al. Journal of Building Materials, 2012, 15(3), 391(in Chinese). 陈正发, 刘桂凤, 秦彦龙, 等. 建筑材料学报, 2012, 15(3), 391. 2 Sun J Y, Huang K, Jiang H Q. Journal of Building Materials, 2007(5), 583(in Chinese). 孙家瑛, 黄科, 蒋华钦. 建筑材料学报, 2007(5), 583. 3 Guo K, Tong Z, Zhang S F, et al. Journal of Building Materials, 2023, 26(11), 1183(in Chinese). 郭凯, 佟舟, 张树峰, 等. 建筑材料学报, 2023, 26(11), 1183. 4 Hoseini M, Bindiganavile V, Banthia N. Cement and Concrete Composites, 2009, 31(4), 213. 5 Basheer L, Kropp J, Cleland D J. Construction and Building Materials, 2001, 15(2-3), 93. 6 Chen S H, Wang J L. Journal of Building Materials, 2023, 26(5), 530(in Chinese). 陈绍华, 王菊琳. 建筑材料学报, 2023, 26(5), 530. 7 Rajasekar A, Wilkinson S, Moy C K. Environmental Science and Ecotechnology, 2021, 6, 100096. 8 Zhang K, Tang C S, Jiang N J, et al. Environmental Earth Sciences, 2023, 82(9), 229. 9 De Muynck W, Cox K, De Belie N, et al. Construction and Building Materials, 2008, 22(5), 875. 10 De Muyuck W, Leuridan S, Van L D, et al. Applied and Environmental Microbiology, 2011, 77(19), 6808. 11 Li S, Chen D F, Lu Y Y, et al. Journal of Building Materials, 2023, 26(8), 914(in Chinese). 李杉, 陈得锋, 卢亦焱, 等. 建筑材料学报, 2023, 26(8), 914. 12 Gu X L, Hong L, Wang Z L, et al. Construction and Building Materials, 2013, 46, 156. 13 Van W W, Vermolen F, Van M G, et al. Transport in Porous Media, 2011, 87, 397. 14 Zhang R, Wu K, Xie D Z, et al. Applied Microbiology and Biotechnology, 2023, 107(5-6), 1525. 15 Morrison G R. Analytical Biochemistry, 1971, 43(2), 527. 16 Zhang R, Xie D Z, Wu K, et al. Cement and Concrete Composites, 2023, 139, 105031. 17 Wang J Y, Jonkers H M, Boon N, et al. Applied Microbiology and Biotechnology, 2017, 101, 5101. 18 Ali A, Li M, Su J F, et al. Science of the Total Environment, 2022, 813, 152668. 19 Rodriguez-blanco J D, Shaw S, Benning L G. Nanoscale, 2011, 3(1), 265. 20 Gebru K A, Kidanemariam T G, Gebretinsae H K. Chemical Engineering Science, 2021, 238, 116610. 21 Sovljanski O, Pezo L, Tomic A, et al. Journal of Basic Microbiology, 2021, 61(9), 835. 22 Zhang R, Wang J Y. Construction and Building Materials, 2023, 403, 133119. |
|
|
|