INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Study on the Nano-grinding Mechanism of 6H-SiC Based on Molecular Dynamics |
GENG Ruiwen1, ZHOU Xingchen2, TIAN Zhuxin2,*, XIE Qiming3, LI Lijun2, WU Haihua1, SHUANG Jiajun2, YANG Zhijiang2
|
1 Hubei Engineering Research Center of Graphite Additive Manufacturing Technology and Equipment, China Three Gorges University, Yichang 443002, Hubei, China 2 College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, Hubei, China 3 Kunming Institute of Physics, Kunming 650223, China |
|
|
Abstract 6H-SiC, as a representative of advanced semiconductor materials, exhibits outstanding physical properties and chemical stability, playing a pivotal role in high-tech industries such as optoelectronics and aerospace. Its high hardness and low fracture toughness present a great challenge in ultra-precision machining. Consequently, this study employs molecular dynamics simulation to investigate the nano-grinding behavior of 6H-SiC under different abrasive shapes (spherical, truncated cone, quadrangular frustum pyramid) and analyzes the influence of grinding depth on nano-grinding characteristics comprehensively. The results indicated that quadrangular frustum pyramid abrasives demonstrate optimal material removal efficiency, albeit accompanied by the largest subsurface damage. Under deeper grinding conditions, the spherical abrasive particles exhibit a material removal rate that surpasses that of the truncated cone particles, and they induce less subsurface damage. Furthermore, as grin-ding depth increases, a transition of the material removal mechanism occurrs, accompanied by increased grinding force and temperature, while the impact of abrasive shape on grinding quality becomes more pronounced. These findings provide a theoretical foundation for optimizing processing parameters of hard brittle materials like 6H-SiC.
|
Published: 25 May 2025
Online: 2025-05-13
|
|
|
|
1 Chen Z B, Huang A Q. Materials Science in Semiconductor Processing, 2024, 172, 108052. 2 Chaudhary O S, Denaï M, Refaat S S, et al. Energies, 2023, 16(18), 6689. 3 Taibi I, Abid H. Materials Science Forum, 2022, 1062, 427. 4 Huang Y G, Tang F, Ma D W, et al. IEEE Photonics Journal, 2019, 11(5), 1. 5 Zhang S, Cheng X, Chen J Y. Applied Surface Science, 2022, 588, 152944. 6 Xiao G B, To S, Zhang G Q. Computational Materials Science, 2015, 98, 178. 7 Yu D L, Zhang H L, Feng X Y, et al. ACS Omega, 2022, 7(21), 18168. 8 Wu Z H, Zhang L C, Yang S Y, et al. Tribology International, 2022, 171, 107563. 9 Yan J W, Asami T, Harada H, et al. Precision Engineering, 2009, 33(4), 378. 10 Li M, Guo X G, Kang R K, et al. Tribology International, 2023, 187, 108720. 11 Liu R H. Research on the surface machining mechanism of hard and brittle materials based on single abrasive grain wear behavior. Master’s Thesis, Chang’an University, China, 2022(in Chinese). 刘瑞虎. 基于单颗磨粒磨削行为的硬脆材料表面加工机理研究. 硕士学位论文, 长安大学, 2022. 12 Plimpton S. Journal of Computational Physics, 1995, 117(1), 1. 13 Tian Z G, Chen X, Xu X P. International Journal of Extreme Manufacturing, 2020, 2(4), 045104. 14 Tersoff J. Physical Review B, 1989, 39(8), 5566. 15 Liu Y, Li B Z, Kong L F. Computational Materials Science, 2018, 148, 76. 16 Chen S K. Study of surface and subsurface damage of single crystal SiC wafer in ultraprecission machining. Master’s Thesis, Guangdong University of Technology, China, 2015(in chinese) 陈森凯. 单晶SiC基片超精密加工表面及亚表面损伤研究. 硕士学位论文, 广东工业大学, 2015. 17 Zhao P Y, Zhao B, Pan J S, et al. Materials Science in Semiconductor Processing, 2022, 143, 106531. 18 Hua D P, Zhou Q, Wang W, et al. Journal of Mechanical Engineering, 2024, 60(5), 231(in Chinese). 华东鹏, 周青, 王婉, 等. 机械工程学报, 2024, 60(5), 231. 19 Zhang S, Dai H F. Materials Science in Semiconductor Processing, 2024, 171, 108034. 20 Bi G Y, Li Y Z, Lai M, et al. Applied Surface Science, 2023, 616, 156549. 21 Song J. Study on grinding characteristics of single crystal gallium nitride and its molecular dynamics simulation. Master’s Thesis, Yancheng Institute of Technology, China, 2023(in chinese) 宋健. 单晶氮化镓的磨削特性研究及其分子动力学仿真. 硕士学位论文, 盐城工学院, 2023. 22 Matteoli E, Mansoori G A. The Journal of Chemical Physics, 1995, 103, 4672. 23 Chen L, Liu Y Q, Tang C, et al. Journal of Mechanical Engineering, 2023, 59(23), 229(in Chinese). 陈磊, 刘阳钦, 唐川, 等. 机械工程学报, 2023, 59(23), 229. 24 Nguyen V T, Fang T H. Scientific Reports, 2021, 11(1), 17795. 25 Geng R W, Shuang J J, Xie Q M, et al. Machine Tool & Hydraulics, 2024, 52(21), 191(in Chinese). 耿瑞文, 双佳俊, 谢启明, 等. 机床与液压, 2024, 52(21), 191. 26 He Y. Study on nanometric cutting mechanism of lutetium oxide single crystal. Master’s Thesis, Tianjin University, China, 2022(in chinese) 何越. 激光晶体氧化镥的纳米切削机理研究. 硕士学位论文, 天津大学, 2022. 27 Goel S, Luo X C, Agrawal A, et al. International Journal of Machine Tools and Manufacture, 2015, 88, 131. 28 Xiao L B. The study of effects of secondary cutting on surface damage of monocrystalline silicon. Master’s Thesis, Yanshan University, China, 2021(in chinese) 肖联榜. 二次切削对单晶硅表面损伤的影响研究. 硕士学位论文, 燕山大学, 2021. 29 Liu Y L, Ji Y Q, Dong L Q, et al. Applied Physics A, 2021, 128(1), 34. 30 Zhao L, Hu W J, Zhang Q, et al. Ceramics International, 2021, 47(17), 23895. 31 Guo X G, Zhai R F, Shi Y T, et al. The International Journal of Advanced Manufacturing Technology, 2020, 106(1), 333. 32 Pan R, Zhong B, Wang Z Z, et al. The International Journal of Advanced Manufacturing Technology, 2018, 94(1), 643. 33 Wang H X, Gao S, Guo X G, et al. Journal of Electronic Materials, 2023, 52(7), 4865. |
|
|
|