METAMATERIALS FOR MANIPULATING LIGHT & HEAT:APPLICATIONS AND INNOVATIONS |
|
|
|
|
|
Research Progress on All Solid State Electrochromic Devices |
ZHANG Wenxia, JIA Yan*, CHENG Haifeng, LIU Dongqing*
|
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Electrochromic devices have the advantages of lightweight, fast response speed, good reusability, and easy preparation of flexible devices. They are widely used in fields such as smart sensors, smart windows, flexible wearable devices, and energy storage devices. Compared to liquid devices that are prone to leakage and have low safety, all solid state electrochromic devices are easy to package and have high safety, making them more versatile for comprehensive applications. This article first introduces the structure of electrochromic devices, provides a detailed overview of the performance and applications of inorganic and organic solid-state electrochromic devices, and compares and analyzes the advantages and disadvantages between the two devices. Finally, the development and application prospects of all solid state electrochromic devices are discussed from the perspectives of performance bottlenecks, process difficulties, and industrialization.
|
Published: 10 January 2025
Online: 2025-01-10
|
|
|
|
1 Liang X, Chen M, Guo S, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40810. 2 Jia Y, Liu D, Chen D, et al. Advanced Science, 2024, 11(36), 2405962. 3 Song Y, Cheng B, Cheng H, et al. ACS Applied Materials & Interfaces, 2024, 16(27), 35372. 4 Granqvist C G. Thin Solid Films, 2014, 564, 1. 5 Deb S K. Applied Optics, 1969, 8(101), 192. 6 Li H, Firby C J, Elezzabi A Y. Joule, 2019, 3(9), 2268. 7 Wang W Q, Wang X L, Xia X H, et al. Nanoscale, 2018, 10(17), 8162. 8 Alamer F A, Otley M T, Ding Y, et al. Advanced Materials, 2013, 25(43), 6256. 9 Wang K, Wu H, Meng Y, et al. Energy & Environmental Science, 2012, 5(8), 8384. 10 Huang Q, Hu J, Yin M, et al. Solar Energy Materials and Solar Cells, 2024, 267, 112706. 11 Zhou D, Xie D, Xia X, et al. Science China Chemistry, 2016, 60(1), 3. 12 Wang W, Guo S, Feng F, et al. Polymer Reviews, DOI:10.1080/15583724. 2024. 2406973. 13 Dini D, Decker F. Electrochimica Acta, 1998, 43(19-20), 2919. 14 Xiao Y, Zhong X, Guo J, et al. Electrochimica Acta, 2018, 260, 254. 15 Cui Y, Wang Q, Yang G, et al. Journal of Solid State Chemistry, 2021, 297, 122082. 16 Macher S, Schott M, Sassi M, et al. Advanced Functional Materials, 2019, 30(6), 1906254. 17 Farasat M, Golzan M M, Farhadi K, et al. Modern Physics Letters B, 2016, 30(15), 1650175. 18 Jamdegni M, Kaur A. Journal of the Electrochemical Society, 2022, 169(3), 030541. 19 Yan C, Kang W, Wang J, et al. ACS nano, 2014, 8(1), 316. 20 Lin S, Wang H, Zhang X, et al. Nano Energy, 2019, 62, 111. 21 Ghosh T, Kandpal S, Rani C, et al. Advanced Optical Materials, 2023, 11(12), 2203126. 22 Jia H, Cao X, Jin P. Journal of Inorganic Materials, 2020, 35(5), 1650175. 23 Zhang X, Zhang H, Li Q, et al. IEEE Electron Device Letters, 2000, 21(5), 215. 24 Li W, Zhang X, Chen X, et al. Materials Letters, 2020, 265, 127464. 25 Cao X, Jin P, Huang A, et al. Journal of Inorganic Materials, 2021, 36(5), 479. 26 Zhu Y, Xie L, Chang T, et al. Electrochimica Acta, 2019, 317, 10. 27 Liu Q, Dong G, Chen Q, et al. Solar Energy Materials and Solar Cells, 2018, 174, 545. 28 Li J, Liu W, Wei Y, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(2), 824. 29 Liu R, Ren Y, Hou C, et al. Ceramics International, 2024, 50(20), 38632. 30 Xiao Y, Zhang X, Li Z, et al. Solar Energy Materials and Solar Cells, 2024, 268, 112735. 31 Lee J, Sul H, Jung Y, et al. Advanced Functional Materials, 2020, 30(36), 2003328. 32 Hammad A H. Journal of Materials Science: Materials in Electronics, 2024, 35(4), 291. 33 Sequeira C A C, Rodrigues L F F T T G, Santos D M F. ECS Journal of Solid State Science and Technology, 2012, 1(5), R136. 34 Ren Y, Liu R, Nishii J, et al. ACS Applied Materials & Interfaces, 2024, 16(15), 19094. 35 Tian Y, Zhang W, Cong S, et al. Advanced Functional Materials, 2015, 25(36), 5833. 36 Wang Z, Wang H, Gu X, et al. Solid State Ionics, 2019, 338, 168. 37 Wang J, Xie S, Shi Q, et al. Ceramics International, 2022, 48(21), 31491. 38 Jia H, Ji X, Shao Z, et al. Advanced Optical Materials, 2022, 10(11), 2200106. 39 Sun S, Tang C, Jiang Y, et al. Solar Energy Materials and Solar Cells, 2020, 207, 110332. 40 Tian Y, Cong S, Su W, et al. Nano Letters, 2014, 14(4), 2150. 41 Tong Z, Lian R, Yang R, et al. Energy Storage Materials, 2022, 44, 497. 42 Sequeira C, Rodrigues L F F T T G, Santos D M F. ECS Journal of Solid State Science and Technology, 2012, 1(5), R136. 43 Hammad A H. Journal of Materials Science: Materials in Electronics, 2024, 35(4), 291. 44 Tian Y, Zhang W, Cong S, et al. Advanced Functional Materials, 2015, 25(36), 5833. 45 Dong D, Wang W, Dong G, et al. Applied Surface Science, 2015, 357, 799. 46 Dong D, Wang W, Dong G, et al. Applied Surface Science, 2016, 383, 49. 47 Niwa T, Takai O. Thin Solid Films, 2010, 518(18), 5340. 48 Niwa T, Takai O. Thin Solid Films, 2010, 518(6), 1722. 49 Pan L, Han Q, Dong Z, et al. Electrochimica Acta, 2019, 328, 135107. 50 Wang S, Jiang T, Meng Y, et al. Science, 2021, 374(6574), 1501. 51 Yuan G, Hua C, Khan S, et al. Electrochimica Acta, 2018, 260, 274. 52 Wang Z, Wang H, Gu X, et al. Solid State Ionics, 2019, 338, 168. 53 Burkhardt S, Elm M T, Lani Wayda B, et al. Advanced Materials Interfaces, 2018, 5(6), 1701587. 54 Ding Y, Wang M, Mei Z, et al. Materials and Solar Cells, 2022, 248, 112037. 55 Larsson A L, Niklasson G A. Materials Letters, 2004, 58(20), 2517. 56 Cho H M, Hwang Y J, Oh H S, et al. Advanced Photonics Research, 2024, 2024, 2400103. 57 Kim B, Koh J K, Park J, et al. Nano Convergence, 2015, 2(1), 19. 58 Ismail L, Majid S R, Arof A K. Materials Research Innovations, 2013, 13(3), 282. 59 Ergoktas M S, Bakan G, Steiner P, et al. Nano Letters, 2020, 20(7), 5346. 60 Zhang F, Dong G, Liu J, et al. Ionics, 2017, 23(7), 1879. 61 Chen N, Dai Y, Xing Y, et al. Energy & Environmental Science, 2017, 10(7), 1660. 62 Huang R, Xie Y, Cao N, et al. Nano Energy, 2024, 129, 109989. 63 Orimolade B O, Draper E R. Chemistry-A European Journal, 2024, 30(23), e202303880. 64 Shinde S S, Wagh N K, Kim S H, et al. Advanced Science, 2023, 10(32), 2304235. 65 Rajendran S. Solid State Ionics, 2004, 167(3-4), 335. 66 Schwendeman I, Hwang J, Welsh D M, et al. Advanced Materials, 2001, 13(9), 634. 67 Rajendran S, Mahendran O. Ionics, 2001, 7, 463. 68 Yahya M Z A, Arof A K. European Polymer Journal, 2003, 39(5), 897. 69 Singh K P, Singh R P, Gupta P N. Solid State Ionics, 1995, 78(3-4), 223. 70 Alesanco Y, Palenzuela J, Viñuales A, et al. ChemElectroChem, 2014, 2(2), 218. 71 Vijayaraghavan S, Raj N, Kumar M M, et al. Electrochimica Acta, 2024, 504, 144948. 72 Garcia G, Buonsanti R, Runnerstrom E L, et al. Nano Letters, 2011, 11(10), 4415. 73 Azarian M H, Wootthikanokkhan J. Chinese Journal of Polymer Science, 2022, 40(10), 1213. 74 Wang X, Yang Y, Jin Q, et al. Advanced Functional Materials, 2023, 33(30), 2214417. 75 Zhou Z, Tang Y, Zhao F, et al. Chemical Engineering Journal, 2024, 481, 148724. 76 Zhao Y, Chen X, Tu S, et al. Optical Materials, 2024, 149, 114991. 77 Kandpal S, Ghosh T, Rani C, et al. Solar Energy Materials and Solar Cells, 2022, 236, 111502. 78 Lee M, Son M, Chun D M, et al. International Journal of Precision Engineering and Manufacturing, 2020, 22(1), 189. 79 Li J, Li J, Li H, et al. ACS Applied Materials & Interfaces, 2021, 13(23), 27200. 80 Shao Z, Huang A, Ming C, et al. Nature Electronics, 2022, 5(1), 45. 81 Wu X, Bai Z, Bao B, et al. Advanced Functional Materials, 2023, 34(12), 2312358. 82 Liu Q, Dong G, Xiao Y, et al. Solar Energy Materials and Solar Cells, 2016, 157, 844. 83 Evecan D, Zayim E. Current Applied Physics, 2019, 19(2), 198. |
|
|
|