METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research and Progress on Material Systems and Related Technologies of Liquid Metal Battery |
JING Wenchang1, ZHANG Zhihong1, LIU Xiangchen1, WU Yunyi2, LI Baorang1,*
|
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China 2 Research Center for Comprehensive Energy Technology, CTG Science and Technology Research Institute, Beijing 100038, China |
|
|
Abstract As a new type of energy storage technology, liquid metal batteries, with unique structures, are considered to be one of the most promising solutions for large scale fixed energy storage due to their advantages such as low cost, high magnification, long lifespan and ease of manufacturing and amplification. Since proposed by professor Donald Sadoway in 2006, liquid metal batteries based on various types of material systems have been extensively studied. In this summary, after a detailed introduction of the working principle and material selection criteria of liquid metal batteries, materials recommendation system on high-temperature liquid metal batteries (>300 ℃), medium temperature liquid metal batteries (100—300 ℃), and room temperature liquid metal batteries (<40 ℃) were discussed. Meanwhile, depending on the open-published literature, a systematic review was conducted on the present research situation in liquid metal batteries including packaging technology in recent years. Finally proposed some possible research directions on liquid metal batteries in the future.
|
Published: 10 January 2025
Online: 2025-01-10
|
|
|
|
1 Sheng H, Zhou Q Y, Liu Y, et al. Power Generation Technology, 2021, 42(1), 8 (in chinese). 申洪, 周勤勇, 刘耀, 等. 发电技术, 2021, 42(1), 8. 2 Li H M, Wang K L, Cheng S J, et al. ACS Applielectrd Materials & Interfaces, 2016, 8(20), 12830. 3 Cairns E J, Crouthamel C E, Fischer A K, et al. Galvanic cells with fused-salt electrolyte, Argonne National Lab, USA, 1967, pp. 85. 4 Kim H, Boysen D A, Newhouse J M, et al. Chemical Reviews, 2013, 113(3), 2075. 5 Li Z H, Zhu F F, Li H M, et al. Energy Storage Science and Technology, 2017, 6(5), 981 (in Chinese). 黎朝晖, 朱方方, 李浩秒, 等. 储能科学与技术, 2017, 6(5), 981. 6 Xie H L, Chen Z Y, Chu P, et al. Journal of Power Sources, 2022, 536, 231527. 7 Dai T, Zhao Y, Ning X H, et al. Journal of Power Sources, 2018, 381, 38. 8 Cui K X, Zhao W, Li S W, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(5), 1871. 9 Wang K L, Jiang K, Chung B, et al. Nature, 2014, 514(7522), 348. 10 Kim J, Shin D, Jung Y, et al. Journal of Power Sources, 2018, 377, 87. 11 Yu H, Lu H M, Hu X Q, et al. Materials Chemistry and Physics, 2020, 247, 122865. 12 Spatocoo B L, Ouchi T, Lambotte G, et al. Journal of the Electrochemical Society, 2015, 162(14), A2729. 13 Ashour R F, Yin H, Ouchi T, et al. Journal of the Electrochemical Society, 2017, 164(2), A535. 14 Zhou H, Li H M, Gong Q, et al. Energy Storage Materials, 2022, 50, 572. 15 Xu J L, Kjos O S, Osen K S, et al. Journal of Power Sources, 2016, 332, 274. 16 Holubowitch N E, Manek S E, Landon J, et al. Advanced Materials Technologies, 2016, 1(3), 1600035. 17 Zhao W, Li P, Han K, et al. Journal of Power Sources, 2020, 463, 228233. 18 Bradwell D J, Kim H, Sirk A H C, et al. Journal of the American Che-mical Society, 2012, 134(4), 1895. 19 Kim H, Boysen D A, Ouchi T, et al. Journal of Power Sources, 2013, 241, 239. 20 Ouchi T, Kim H, Spatocco B L, et al. Nature Communications, 2016, 7(1), 10999. 21 Yan S, Zhou X B, Li H M, et al. Journal of Power Sources, 2021, 514, 230578. 22 Zhou X B, Zhou H, Yan S, et al. Journal of Power Sources, 2022, 534, 231428. 23 Xie H L, Chu P, Yang M A, et al. Energy Storage Materials, 2023, 54, 20. 24 Zhao W, Li P, Liu Z W, et al. Chemistry of Materials, 2018, 30(24), 8739. 25 Cui K X, Li P, Zhao W, et al. Materials Letters, 2023, 338, 134067. 26 Zhou Y, Li G Q, Li B X, et al. Energy Storage Materials, 2022, 53, 927. 27 Zhou H, Li B X, Yu M, et al. Energy Storage Materials, 2023, 56, 205. 28 Ning X H, Phadke S, Chung B, et al. Journal of Power Sources, 2015, 275, 370. 29 Zhou X B, Yan S, He X, et al. Energy Storage Materials, 2023, 61, 102889. 30 Zhou Y, Ning X H. Small, 2023, 20(3), 2304528. 31 Yeo J S, Lee J, Yoo E J, et al. ECS Meeting Abstracts, 2018, 1(2), 204. 32 Xie H L, Zhao H L, Wang J, et al. Journal of Power Sources, 2020, 472, 228634. 33 Li H M, Wang K L, Zhou H, et al. Energy Storage Materials, 2018, 14, 267. 34 Yeo J S, Lee J H, Yoo E J. Electrochimica Acta, 2018, 290, 228. 35 Ouchi T, Kim H, Ning X, et al. Journal of the Electrochemical Society, 2014, 161(12), A1898. 36 Ning X H, Liao C Z, Li G Q. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12), 1723. 37 Fetzer R, Zhang T R, Lindner F, et al. Journal of Power Sources, 2024, 591, 233823. 38 Gong Q, Ding W J, Bonk A, et al. Journal of Power Sources, 2020, 475, 228674. 39 Holubowitch N, Manek S, Landon J, et al. ECS Transactions, 2014, 64(4), 439. 40 Holubowitch N E, Manek S E, Landon J, et al. International Journal of Energy Research, 2016, 40(3), 393. 41 Kim H, Boysen D A, Bradwell D J, et al. Electrochimica Acta, 2012, 60, 154. 42 Poizeau S, Kim H, Newhouse J M, et al. Electrochimica Acta, 2012, 76, 8. 43 Newhouse J M, Poizeau S, Kim H, et al. Electrochimica Acta, 2013, 91, 293. 44 Lu X C, Kirby B W, Xu W, et al. Energy & Environmental Science, 2013, 6(1), 299. 45 Kummer J T, Weber N. SAE Transactions, SAE International, 1968, 76, 1003. 46 Wang D, Hwang J, Chen C Y, et al. Advanced Functional Materials, 2021, 31(48), 2105524. 47 Sudworth J L. Journal of Power Sources, 2001, 100(1), 149. 48 Lu X C, Li G S, Kim J Y, et al. Journal of Power Sources, 2012, 215, 288. 49 Li G, Lu X, Kim J Y, et al. Journal of Power Sources, 2014, 272, 398. 50 Ao X, Wen Z Y, Hu Y Y, et al. Journal of Power Sources, 2017, 340, 411. 51 Li Y P, Shi L, Gao X P, et al. Chemical Engineering Journal, 2021, 421, 127853. 52 Li G S, Lu X C, Kim J Y, et al. Advanced Energy Materials, 2015, 5(12), 1500357. 53 Jin Y, Liu K, Lang J L, et al. Nature Energy, 2018, 3(9), 732. 54 Jin Y, Liu K, Lang J L, et al. Joule, 2020, 4(1), 262. 55 Azza H, Selhaoui N, Iddaoudi A, et al. Journal of Phase Equilibria and Diffusion, 2017, 38(5), 788. 56 Deshpande R D, Li J C, Cheng Y T, et al. Journal of the Electrochemical Society, 2011, 158(8), A845. 57 Guo X L, Ding Y, Yu G H. Advanced Materials, 2021, 33(29), 2100052. 58 Liang W T, Hong L, Yang H, et al. Nano Letters, 2013, 13(11), 5212. 59 Guo X L, Zhang L Y, Ding Y, et al. Energy & Environmental Science, 2019, 12(9), 2605. 60 Wei C L, Tan L W, Zhang Y C, et al. Energy Storage Materials, 2022, 50, 473. 61 Guo X L, Ding Y, Xue L G, et al. Advanced Functional Materials, 2018, 28(46), 1804649. 62 Wu Y P, Huang L, Huang X K, et al. Energy & Environmental Science, 2017, 10(8), 1854. 63 Zhu J H, Wu Y P, Huang X K, et al. Nano Energy, 2019, 62, 883. 64 Wang K Z, Hu J, Chen T Y, et al. Energy Technology, 2021, 9(9), 2100330. 65 Huang Y, Wang H J, Jiang Y B, et al. Materials Letters, 2020, 276, 128261. 66 Kidanu W G, Hur J, Kim I T. Materials, 2021, 15(1), 168. 67 Ding Y, Guo X L, Qian Y M, et al. Advanced Materials, 2020, 32(30), 2002577. 68 Xue L G, Gao H C, Zhou W D, et al. Advanced Materials, 2016, 28(43), 9608. 69 Xue L G, Zhou W D, Xin S, et al. Angewandte Chemie International Edition, 2018, 57(43), 14184. 70 Zhang L Y, Peng S S, Ding Y, et al. Energy & Environmental Science, 2019, 12(6), 1989. 71 Ding Y, Guo X L, Qian Y M, et al. Advanced Materials, 2019, 31(11), 1806956. 72 Si W, Xiao Z, Wang R Z, et al. Energy Storage Materials, 2023, 57, 205. 73 Xue L G, Gao H C, Li Y T, et al. Journal of the American Chemical Society, 2018, 140(9), 3292. 74 Li Z H, Zhou H, Li H M, et al. Power Generation Technology, 2022, 43(5), 760 (in Chinese). 李泽航, 周浩, 李浩秒, 等. 发电技术, 2022, 43(5), 760. 75 Li H M. Study on energy storage materials and technologies based on molten salt electrochemistry. Ph. D. Thesis, Huazhong University of Science & Technology, China, 2016 (in Chinese). 李浩秒. 基于熔盐电化学的新型储能材料与技术研究. 博士学位论文, 华中科技大学, 2016. 76 Li B R, Wen B, Chen H Z, et al. Corrosion Science, 2021, 178, 109058. 77 Zhang J, Huang J, Liu R X, et al. Corrosion Science, 2021, 190, 109672. 78 He J C. Multiscale study on aluminum/alumina functionally graded material with mesoscopic pores. Master's Thesis, Wuhan University of Technology, China, 2020 (in Chinese). 何济沧. 含细观孔隙铝/氧化铝功能梯度材料多尺度研究. 硕士学位论文, 武汉理工大学, 2020. 79 Chu P, Zhao H L, Wang J, et al. Journal of Alloys and Compounds, 2022, 903, 163952. 80 Ouchi T, Sadoway D R. Journal of Power Sources, 2017, 357, 158. 81 Cui K X, An F Q, Zhao W, et al. The Journal of Physical Chemistry C, 2021, 125(1), 237. 82 Cui K X, Li P, Zhao W, et al. Journal of Power Sources, 2022, 538, 231584. 83 Cui K X, Zhao W, Zhou D M, et al. ACS Applied Energy Materials, 2021, 4(9), 9013. |
|
|
|