INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
An Overview of SiGe Selective Etching Technology Used for the Preparation of Gate-All-Around Transistor |
LIU Enxu1,2, LI Junjie1,2,*, LIU Yang1, YANG Chaoran1,2, ZHOU Na1,2, LI Junfeng1,2, LUO Jun1,2, WANG Wenwu1,2
|
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China 2 School of Integrated Circuits, University of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Gate-all-around (GAA) transistors are the most competitive device structure to replace existing fin field effect transistors(FinFET) below the sub-3 nm node, effectively improve the short-channel effect caused by the continuous shrinking of device size along Moore's Law. In the process flow of GAA device preparation, inner spacer preparation and channel release are newly introduced process modules relative to FinFET, and both require SiGe selective etching technology. SiGe is required to be removed as a sacrificial layer by selective etching with as little damage as possible to the Si channel. This paper presents a review of the SiGe selective etching techniques required in the gate-all-around (GAA) transistor fabrication process. Firstly, we analyze the development trend of device structure and the application of SiGe selective etching. Secondly, the development of conventional SiGe selective etching methods and new selective etching techniques are categorized and reviewed. After that the advantages and shortcomings of each technique are summarized. Finally, this study analyzes the challenges faced by SiGe selective etching technology, and prospects the possible future development trends.
|
Published: 10 May 2024
Online: 2024-05-13
|
|
Fund:Project A of Chinese Academy of Sciences(XDA0330300) and Chinese Academy of Sciences Supports Technical Talent Project(E2YR01X001). |
|
|
1 Moore G E. Proceedings of the IEEE, 1998, 86(1), 82. 2 Colinge J P. FinFETs and other multi-gate transistors,Springer,USA, 2008,pp.14. 3 Mertens H, Ritzenthaler R, Chasin A, et al.In:2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016, pp.19.7. 1. 4 Kim S, Kim M, Ryu D, et al. IEEE Transactions on Electron Devices, 2020, 67(6), 2648. 5 Wostyn K, Kenis K, Mertens H, et al.In:Solid State Phenomena. Trans Tech Publications Ltd., 2018, pp. 126. 6 Nagy D, Indalecio G, Garcia-Loureiro A J, et al. IEEE Journal of the Electron Devices Society, 2018, 6,332. 7 Mohapatra E, Dash T P, Jena J, et al. Physica Scripta, 2020, 95(6), 065808. 8 Moon D I, Choi S J, Duarte J P, et al. IEEE Transactions on Electron Devices, 2013, 60(4), 1355. 9 Zhang Q, Yin H, Meng L, et al. IEEE Electron Device Letters, 2018, 39(4), 464. 10 Durfee C, Kal S, Pancharatnam S, et al. ECS Transactions, 2021, 104(4), 217. 11 Benjamin Colombeau.In:2021 IEEE International Electron Devies Metting. U.S. 2021,pp.1. 12 Li J, Li Y, Zhou N, et al. Nanomaterials, 2020, 10(4), 793. 13 Pelosi M. From finFET to nanosheet Si-SiGe GAAFET: fabrication process simulation and analysis. Master's Thesis, Politecnico Di Torino, Italy,2021. 14 Li J, Wang W, Li Y, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(1), 134. 15 Mertens H, Ritzenthaler R, Hikavyy A, et al.In: 2016 IEEE Symposium on VLSI technology. IEEE, 2016,pp.1. 16 Bao R, Watanabe K, Zhang J, et al.In:2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019,pp.11.2. 1. 17 Johnson F S, Miles D S, Grider D T, et al. Journal of Electronic Mate-rials, 1992, 21(8), 805. 18 Stoffel M, Malachias A, Merdzhanova T, et al. Semiconductor Science and Technology, 2008, 23(8), 085021. 19 Krist A H, Godbey D J, Green N P. Applied Physics Letters, 1991, 58(17), 1899. 20 Kato J, Oka H, Kanemoto K, et al. ECS Transactions, 2007, 6(8), 245. 21 Xue Zhongying, Wei Xing, Liu Linjie, et al. Science China Technological Sciences, 2011, 54(10),2802. 22 Holländer B, Buca D, Mantl S, et al. Journal of The Electrochemical Society, 2010, 157(6), H643. 23 Baraissov Z, Pacco A, Koneti S, et al. ACS Applied Materials & Interfaces, 2019, 11(40), 36839. 24 Zhang Q, Gu J, Xu R, et al. Nanomaterials, 2021, 11(3), 646. 25 Kil Y H, Yang J H, Kang S, et al. JSTS:Journal of Semiconductor Technology and Science, 2013, 13(6), 668. 26 Komori K, Rip J, Yoshida Y, et al.In:Solid State Phenomena. Trans Tech Publications Ltd., 2018, pp.107. 27 Zhao Y, Iwase T, Satake M, et al.In:2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2021,pp.1. 28 Xuan G, Adam T N, Lv P C, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008, 26(3), 385. 29 Zhang Y, Oehrlein G S, de Frésart E, et al. Journal of Applied physics, 1992, 71(4), 1936. 30 Oehrlein G S, Kroesen G M W, De Frésart E, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1991, 9(3), 768. 31 Kumar A, Lee W H, Wang Y L. IEEE Transactions on Semiconductor Manufacturing, 2021, 34(2), 177. 32 Barnola S, Vizioz C, Vulliet N, et al. ECS Transactions, 2008, 16(10), 923. 33 Chang S J, Juang Y Z, Nayak D K, et al. Materials Chemistry and Phy-sics, 1999, 60(1), 22. 34 Borel S, Arvet C, Bilde J, et al. Microelectronic Engineering, 2004, 73, 301. 35 Pargon E, Petit-Etienne C, Youssef L, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2019, 37(4), 040601. 36 Kuijer T J M, Giling L J, Bloem J. Journal of Crystal Growth, 1974, 22(1), 29. 37 Hartmann J M, Destefanis V, Rabillé G, et al. Semiconductor Science and Technology, 2010, 25(10), 105009. 38 Bogumilowicz Y, Hartmann J M, Truche R, et al. Semiconductor Science and Technology, 2004, 20(2), 127. 39 Loubet N, Kormann T, Chabanne G, et al. Thin Solid Films, 2008, 517(1), 93. 40 Yamamoto Y, Köpke K, Tillack B. Thin Solid Films, 2008, 517(1), 90. 41 Yamamoto Y, Köpke K, Kurps R, et al. Applied Surface Science, 2008, 254(19), 6037. 42 Hartmann J M, Destefanis V, Rabillé G, et al. Semiconductor Science and Technology, 2010, 25(10), 105009. 43 Salvetat T, Destefanis V, Borel S, et al. ECS Transactions, 2008, 16(10), 439. 44 Kojima M, Kato H, Gatto M, et al. Journal of Applied Physics, 1991, 70(6), 2901. 45 Vähänissi J. Xenon difluoride etching of sacrificial layers for fabrication of microelectromechanical devices.Master's Thesis,Aalto University, Espoo, Finland, 2019. 46 Ibbotson D E, Mucha J A, Flamm D L, et al. Journal of Applied Physics, 1984, 56(10), 2939. 47 Tsai W T. Journal of Hazardous Materials, 2011, 190(1-3), 1. 48 Leinenbach C, Seidel H, Fuchs T, et al.In:2007 IEEE 20th Internatio-nal Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2007,pp. 65. 49 Leinenback C, Kattelus H, Knechtel R, et al. Handbook of silicon based MEMS materials and technologies, Elsevier, Netherlands,2020, pp. 503. 50 Tsai Y H, Wang M. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2022, 40(1), 013201. 51 Loubet N, Kal S, Alix C, et al.In:2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019,pp.11.4. 1. 52 Kanarik K J, Lill T, Hudson E A, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015, 33(2), 020802. 53 Yin X, Zhu H, Zhao L, et al. ECS Journal of Solid State Science and Technology, 2020, 9(3), 034012. 54 Li Y, Zhu H, Kong Z, et al. Nanomaterials, 2021, 11(5), 1209. 55 Li J, Li Y, Zhou N, et al. Materials, 2020, 13(3), 771. |
|
|
|