REVIEW PAPER |
|
|
|
|
|
Current Research Status of Phase Field Simulation for Microstructures of Additively Manufactured Metals |
GENG Ruwei1, DU Jun2, WEI Zhengying1, WEI Pei1
|
1 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049; 2 Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an 710054 |
|
|
Abstract Metal additive manufacturing is a strategic and innovative material forming technology that has been developed in nearly three decades. Current research for metal additive manufacturing mainly focuses on the equipment and control system R&D, product (component) testing, etc., but few works touch the issues of microstructure evolution and microstructure-mechanical pro-perty relationship. The development status of metal additive manufacturing and research inadequacy for the produced metal components’ microstructures are summarized in this paper, illustrating the necessity and urgency of microstructure evolution investigation. Based on an introduction of the fundamental principles and advantages of phase field simulation, the unresolved issues and tentative solutions for the model selection, parameters determination, etc., are described emphatically. The influences of process parameters on product (component) microstructure are discussed from the perspective of phase field numerical simulation. Finally, the paper displays the future development trend of exploring the metals’ microstructure evolutions during additive manufacturing process by using phase field simulation.
|
Published: 10 April 2018
Online: 2018-05-11
|
|
|
|
1 Wang H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J].Acta Aeronautica et Astronautica Sinica,2014,35(10):2690(in Chinese).
王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690.
2 Boettinger W J, Warren J A, Beckermann C, et al. Phase-field si-mulation of solidification[C]∥ASME 2004 International Mechanical Engineering Congress and Exposition.Anaheim,2002:519.
3 Badillo A, Beckermann C. Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification[J].Acta Materialia,2006,54(8):2015.
4 Sun D, Zhu M, Pan S, et al. Lattice Boltzmann modeling of dendri-tic growth in a forced melt convection[J].Acta Materialia,2009,57(6):1755.
5 Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J].Materials & Design,2012,34:159.
6 Fallah V, Corbin S F, Khajepour A. Process optimization of Ti-Nb alloy coatings on a Ti-6Al-4V plate using a fiber laser and blended elemental powders[J].Journal of Materials Processing Technology,2010,210(14):2081.
7 Koike M, Martinez K, Guo L, et al. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications[J].Journal of Materials Processing Technology,2011,211(8):1400.
8 Chao Y P, Qi L H, Zuo H S, et al. Remelting and bonding of depo-sited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture[J].International Journal of Machine Tools & Manufacture,2013,69(3):38.
9 Arcella F G, Froes F H. Producing titanium aerospace components from powder using laser forming[J].JOM,2000,52(5):28.
10Gong Shuili, Suo Hongbo, Li Huaixue. Development and application of metal additive manufacturing technology[J].Aeronautical Manufacturing Technology,2013,433(13):66(in Chinese).
巩水利,锁红波,李怀学.金属增材制造技术在航空领域的发展与应用[J].航空制造技术,2013,433(13):66.
11Wilkes J, Hagedorn Y C, Meiners W. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J].Rapid Prototyping Journal,2013,19(1):51.
12Heinl P, Rottmair A, Korner C. Cellular titanium by selective electron beam melting[J].Advanced Engineering Materials,2007,9(5):360.
13 Yan Yongnian, Qi Haibo, Lin Feng, et al. Produced three-dimensional metal parts by electron beam selective melting[J].Chinese Journal of Mechanical Engineering,2007,43(6):87(in Chinese).
颜永年,齐海波,林峰,等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87.
14 Lin Xin, Yang Haiou, Chen Jing, et al. Microstructure evolution of 316L stainless steel during laser rapid forming[J].Acta Metallurgica Sinica,2006,42(4):361(in Chinese).
林鑫,杨海欧,陈静,等.激光快速成形过程中316L不锈钢显微组织的演变[J].金属学报,2006,42(4):361.
15 Chen L Q. Phase-field method and materials genome initiative (MGI)[J].Chinese Science Bulletin,2013,58(35):3638(in Chinese).
陈龙庆.相场模拟与材料基因组计划[J].科学通报,2013,58(35):3638.
16 Li Dichen, Lu Bingheng,et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J].Journal of Mechanical Engineering,2013,49(6):129(in Chinese).
李涤尘,卢秉恒,等.增材制造:实现宏微结构一体化制造[J].机械工程学报,2013,49(6):129.
17 Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D printing) technology[J].Machine Building & Automation,2013,42(4):1(in Chinese).
卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1.
18 Wang C Y,Beckermann C. Equiaxed dendritic solidification with convection. Part 2: Numerical simulations for an Al-4 wt%Cu alloy[J].Metallurgical & Materials Transactions A,1996,27(9):2765.
19 Lee H N, Ryoo H S, Hwang S K. Monte Carlo simulation of microstructure evolution based on grain boundary character distribution[J].Materials Science & Engineering A,2000,281(1-2):176.
20Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J].Physica D-nonlinear Phenomena,1993,63(3-4):410.
21Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A,1992,45(45):7424.
22Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model of solute trapping during solidification[J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,1993,47(3):1893.
23 Loginova I, Amberg G, Agren J. Phase-field simulations of non-isothermal binary alloy solidification[J].Acta Materialia,2001,49(4):573.
24 Suzuki T, Ode M, Kim S G, et al. Phase-field model of dendritic growth[J].Journal of Crystal Growth,2002,s237-239:125.
25 Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys[J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,2000,60:7186.
26 Zhao Su, Li Jinfu, Liu Li, et al. Effect of solute trapping on the growth process in undercooled eutectic melts[J].Acta Metallurgica Sinica,2008,44(11):1335(in Chinese).
赵素,李金富,刘礼,等.溶质截留对过冷共晶生长过程的影响[J].金属学报,2008,44(11):1335.
27 Karma A. Phase-field formulation for quantitative modeling of alloy solidification[J].Physical Review Letters,2001,87(11):115701.
28 Ramirez J C, Beckermann C, Karma A, et al. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,69(1):051607.
29 Ramirez J C, Beckermann C. Examination of binary alloy free dendritic growth theories with a phase-field model[J].Acta Materialia,2005,53(6):1721.
30Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification[J].Physical Review E Statistical Nonli-near & Soft Matter Physics,2004,70(1):061604.
31Amoorezaei M, Gurevich S, Provatas N. Spacing characterization in Al-Cu alloys directionally solidified under transient growth conditions[J].Acta Materialia,2010,58(18):6115.
32Sun Daojin, Liu Jichang, Li Qindong. Phase-field method simulation of microstructure evolution at the bottom of melt pool in coaxial laser cladding[J].Chinese Journal of Laser,2013,40(4):93(in Chinese).
孙道金,刘继常,李钦栋.激光熔覆纯镍熔池底部组织生长的相场法模拟[J].中国激光,2013,40(4):93.
33 Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys[J].Acta Materialia,2012,60(4):1633.
34 Fallah V, Alimardani M, Corbin S F, et al. Temporal development of melt-pool morphology and clad geometry in laser powder deposition[J].Computational Materials Science,2011,50(7):2124.
35 Xie Y, Dong H, Liu J, et al. A multi-scale approach to simulate solidification structure evolution and solute segregation in a weld pool[J].Journal of Algorithms & Computational Technology,2013,7(4):489.
36 Kundin J, Mushongera L, Emmerich H. Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 superalloy[J].Acta Materialia,2015,95:343.
37 Kou S. Welding metallurgy,2nd edition[M].Hoboken:John Wiley & Sons,Inc.,2003:243.
38 Poorhaydari K, Patchett B M, Ivey D G. Estimation of cooling rate in the welding of plates with intermediate thickness[J].Welding Journal,2005,84(10):149.
39 Kessler D A, Koplik J, Levine H. Geometrical models of interface evolution. Ⅲ. Theory of dendritic growth[J].Physical Review A,1985,31(3):313.
40Kessler D A, Levine H. Velocity selection in dendritic growth[J].Physical Review B Condensed Matter,1986,33(11):7867.
41Farzadi A, Doquang M, Serajzadeh S, et al. Phase-field simulation of weld solidification microstructure in an Al-Cu alloy[J].Modelling & Simulation in Materials Science & Engineering,2008,16(6):065005.
42Wang L, Wei Y, Zhan X, et al. A phase field investigation of dendrite morphology and solute distributions under transient conditions in an Al-Cu welding molten pool[J].Science & Technology of Wel-ding & Joining,2016,21:446.
43 Ferreira A F, Paradela K G, Silva D M D, et al. Numerical simulation of microstructural evolution via phase-field model coupled to the solutal interaction mechanism[J].Materials Sciences & Applications,2015,6(10):907.
44 Kurz W, Bezençon C,Gäumann M.Columnar to equiaxed transition in solidification processing[J].Science and Technology of Advanced Materials,2001,2:185.
45 Wei Yanhong, Wang Yong, Dong Zhibo, et al. Simulation of equiaxed dendritic growth in molten pool of pure metal with phase-field method[J].Transactions of the China Welding Institution,2011,32(3):1(in Chinese).
魏艳红,王勇,董志波,等.纯金属TIG焊熔池等轴晶生长的相场法模拟[J].焊接学报,2011,32(3):1.
46 Gong X, Chou K. Phase-field modeling of microstructure evolution in electron beam additive manufacturing[J].Journal of Metals,2015,67(5):1176. |
|
|
|