REVIEW PAPER |
|
|
|
|
|
Optical Transmission Characteristics of Metasurfaces in Infrared Region: Polarization Control, Optical Activity and Asymmetric Transmission |
PAN Weikang, TANG Dengfei, DONG Jianfeng
|
College of Information Science and Engineering, Ningbo University, Ningbo 315211 |
|
|
Abstract Metasurfaces, a new emerging class of artificial planar materials consisting of arrays of sub-wavelength resonant elements, exhibit structure-determined electromagnetic properties and functionalities, and possess strong ability of controlling the wave front. We herein mainly discuss the theoretical and experimental research advances in optical transmission characteristics of nanostructured metasurfaces in infrared region, from the perspectives of polarization control, optical activity and asymmetric transmission, and also briefly describe metasurfaces’ manufacturing technique. The paper ends with a discussion on the future development trends.
|
Published: 10 March 2018
Online: 2018-03-10
|
|
|
|
1 Li T, Wang S M, Cao J X, et al. Cavity-involved plasmonic metamaterial for optical polarization conversion[J].Applied Physics Letters,2010,97(26):261113. 2 Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J].Nano Letters,2013,13(3):1086. 3 Li Z, Liu W, Cheng H, et al. Realizing broadband and invertible li-near-to-circular polarization converter with ultrathin single-layer metasurface[J].Scientific Reports,2014,5:18106. 4 Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: Asymmetric transmission of light[J].Physical Review Letter,2014,113(2):023902. 5 Huang C. The electromagnetic properties of chiral metamaterial[D].Nanjing:Nanjing University,2012(in Chinese). 黄慈.人工手征特异介质的电磁性质研究[D].南京:南京大学,2012. 6 Li Z, Mutlu M, Ozbay E. Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission[J].Journal of Optics,2013,15(2):023001. 7 Lindell I V, Sihvola A H, Tretyakov S A, et al. Electromagnetic waves in chiral and bi-isotropic media[M].Artech House,Boston and London,1994. 8 Svirko Y, Zheludev N, Osipov M. Layered chiral metallic microstructures with inductive coupling[J].Applied Physics Letters,2001,78(4):498. 9 Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J].Nature Communications,2012,3:870. 10 Kuwata-Gonokami M, Saito N, Ino Y, et al. Giant optical activity in quasi-two-dimensional planar nanostructures[J].Physical Review Letters,2005,95(22):227401. 11 Dong J, Zhou J, Koschny T, et al. Bi-layer cross chiral structure with strong optical activity and negative refractive index[J].Optics Express,2009,17(16):14172. 12 Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J].Optics Letters,2009,34(16):2501. 13 Li J, Yang F Q, Dong J F. Design and simulation of L-shaped chiral negative refractive index structure[J].Progress in Electromagnetics Research,2011,116:395. 14 Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial[J].Applied Physics Letters,2008,93(19):191911. 15 Sersic I, van de Haar M A, Arango F B, et al. Ubiquity of optical activity in planar metamaterial scatterers[J].Physical Review Letters,2012,108(22):223903. 16 Feng C, Wang Z B, Lee S, et al. Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams[J].Optics Communications,2012,285(10):2750. 17 Kruk S S, Poddubny A N, Powell D A, et al. Polarization properties of optical metasurfaces of different symmetries[J].Physical Review B,2015,91(19):195401. 18 Yu P, Li J, Tang C, et al. Controllable optical activity with non-chiral plasmonic metasurfaces[J].Light Science & Applications,2016,5(7):16096. 19 Li G, Li Q, Yang L, et al. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials[J].Optics Letters,2016,41(13):2911. 20 Fedotov V A, Mladyonov P L, Prosvirin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J].Physics Review Letter,2006,97(16):167401. 21 Fedotov V A, Schwanecke A S, Zheludev N I, et al. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures[J].Nano Letters,2007,7(7):1996. 22 Dong J F, Xu C, Xu J. Research advances in planar chiral metamaterials[J].Materials Review A: Review Papers,2009,23(1):84(in Chinese). 董建峰,徐超,徐键.平面手征超常介质研究进展[J].材料导报:综述篇,2009,23(1):84. 23 Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J].Physical Review Letters,2010,104(25):253902. 24 Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials[J].Physical Review A,2010,82(5):053811. 25 Liu D J, Xiao Z Y, Ma X L, et al. Asymmetric transmission of li-nearly and circularly polarized waves in metamaterial due to symmetry-breaking[J].Applied Physics Express,2015,8(5):052001. 26 Liu N, Guo H, Fu L, et al. Three-dimensional photonic metamate-rials at optical frequencies[J].Nature Materials,2008,7(1):31. 27 Chen P Y, Chen C H, Wang H, et al.Synthesis design of artificial magnetic metamaterials using a genetic algorithm[J].Optical Express,2008,16(17):12806. 28 Sui S, Ma H, Wang J, et al. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces[J].Applied Physics Letter,2016,109(1):014104. 29 Liu D J, Xiao Z Y, Ma X L. Broadband asymmetric transmission and multi-band 90° polarization rotator of linearly polarized wave based on multi-layered metamaterial[J].Optics Communications,2015,354:272. 30 Liu D Y, Li M H, Zhai X M, et al. Enhanced asymmetric transmission due to Fabry-Perot-like cavity[J].Optical Express,2014,22(10),11707. 31 Liu J, Li Z, Liu W, et al. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces[J].Advanced Optical Materials,2016,4(12):2028. 32 Wang H B, Zhou X, Tang D F, et al. Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry-Perot like resonator[J].Journal of Modern Optics,2017,64(7):750. 33 Zhang C,Pfeiffer C,Jang T, et al. Breaking Malus’ law: Enhancing asymmetric light transmission with metasurfaces[C]∥OSA Technical Digest (online).California,2015. 34 Ji R L, Wang S W, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J].Nanoscale,2016,8(15):8189. 35 Wang Z, Wang Y, Adamo G, et al. A novel chiral metasurface with controllable circular dichroism induced by coupling localized and propagating modes[J].Advanced Optical Materials,2016,4(6):883. 36 Jia Y P, Zhang Y L, Dong X Z, et al. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission[J].Applied Physics Letters,2014,104(1):011108. 37 Ding F, Wang Z, He S, et al. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach[J].ACS Nano,2015,9(4):4111. 38 Zhao Y, Askarpour A N, Sun L, et al. Chirality detection of enan-tiomers using twisted optical metamaterials[J].Nature Communications,2017,8,14180. 39 Zhang C, Pfeiffer C, Jang T, et al. Breaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface[J].Laser & Photonics Reviews,2016,10(5):791. 40 Jahani S, Jacob Z. All-dielectric metamaterials[J].Nature Nanotechnology,2016,11(1):23 41 Moitra P, Slovick B A, Gang Yu Z, et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector[J].Applied Physics Letters,2014,104(17):171102. 42 Ma H, Wu R X. Asymmetric transmission of linearly polarized wave in all-dielectric chiral metamaterial[C]∥Progress in Electromagnetic Research Symposium (PIERS).Shanghai,2016. |
|
|
|