MATERIALS AND SUSTAINABLE DEVELOPMENT: ADVANCED MATERIALS FOR CLEAN ENERGY UTILIZATION |
|
|
|
|
|
A Technological Review of the Highly Efficient Heterojunction with Intrinsic Thin-layer (HIT) Solar Cells |
HAO Licheng, ZHANG Ming, CHEN Wenchao, FENG Xiaodong
|
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 |
|
|
Abstract Heterojunction with intrinsic thin-layer (HIT) consist of thin amorphous silicon layers deposited on crystalline silicon wafers, which forms a silicon heterojunction (SHJ) structure with the major advantages of full exploitation of the excellent passivation properties of a-Si∶H films, and consequently, the energy conversion efficiencies higher than homogenous cells. The paper provides an introduction on the development and the structure of the HIT solar cells, and a discussion upon the wafer layers, the a-Si (undoped/doped) layers, the TCO (transparent conducting oxides) films and the metal grid electrodes from the perspectives of fabrication processes, the principle of passivation, and the band gap. Finally a prospect on the future trends are also proposed.
|
Published: 10 March 2018
Online: 2018-03-10
|
|
|
|
1 Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J].Journal of Applied Physics,1954,25(5):676. 2 Grigorovici R, Croitoru N, Marina M, et al. Heterojunctions between amorphous Si and Si single crystals[J].Revue Roumaine de Physique,1968,13(4):317. 3 Tanaka M, Taguchi M, Matsuyama T, et al. Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer)[J].Japanese Journal of Applied Physics,1992,31(11R):3518. 4 Wakisaka K, Taguchi M, Sawada T, et al. More than 16% solar cells with a new‘HIT’(doped a-Si/nondoped a-Si/crystalline Si) structure[C]∥Conference Record of the Twenty Second IEEE:Photovoltaic Specialists Conference.Las Vegas,NV,USA,1991:887. 5 Tsunomura Y, Yoshimine Y, Taguchi M, et al. Twenty-two percent efficiency HIT solar cell[J].Solar Energy Materials and Solar Cells,2009,93(6):670. 6 Mishima T, Taguchi M, Sakata H, et al. Development status of high-efficiency HIT solar cells[J].Solar Energy Materials and Solar Cells,2011,95(1):18. 7 Taguchi M, Yano A, Tohoda S, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer[J].IEEE Journal of Photovoltaics,2014,4(1):96. 8 Adachi D, Hernández J L, Yamamoto K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency[J].Applied Physics Letters,2015,107(23):233506. 9 Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J].Nature Energy,2017,2:17032. 10 Descoeudres A, Holman Z C, Barraud L, et al. >21% efficient silicon heterojunction solar cells on n- and p-type wafers compared[J].IEEE Journal of Photovoltaics,2013,3(1):83. 11 Wang T H, Page M R, Iwaniczko E, et al. Toward better understanding and improved performance of silicon heterojunction solar cells[C]∥Proc.14th Workshop Crystalline Silicon Solar Cells Mo-dules.Colorado,2004. 12 Wang T H, Iwaniczko E, Page M R, et al. High-Performance amorphous silicon emitter for crystalline silicon solar cells[C]∥MRS Proceedings.Cambridge Univ Press,2005. 13 Zhang Y, Cong R, Zhao W, et al. Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells[J].Science Bulletin,2016,61(10):787. 14 Zhong S, Hua X, Shen W. Simulation of high-efficiency crystalline silicon solar cells with homo-hetero junctions[J].IEEE Transactions on Electron Devices,2013,60(7):2104. 15 Harder N. Heterojunction solar cell with absorber having an integrated doping profile:EP,2291862[P].2009-06-30. 16 Ghannam M, Abdulraheem Y, Shehada G. Interpretation of the degradation of silicon HIT solar cells due to inadequate front contact TCO work function[J].Solar Energy Materials and Solar Cells,2016,145:423. 17 Ruske F. Deposition and properties of TCOs[M]∥Physics and technology of amorphous-crystalline heterostructure silicon solar cells.Springer,2012:301. 18 Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J].IEEE Journal of Photovoltaics,2013,3(4):1184. 19 Kerr M J, Cuevas A, Campbell P. Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination[J].Progress in Photovoltaics:Research and Applications,2003,11(2):97. 20 Macdonald D, Geerligs L J. Recombination activity of interstitialiron and other transition metal point defects in p- and n-type crystalline silicon[J].Applied Physics Letters,2004,85(18):4061. 21 Schmidt J, Cuevas A. Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon[J].Journal of Applied Physics,1999,86(6):3175. 22 Bai Y, Phillips J E, Barnett A M. The roles of electric fields and illumination levels in passivating the surface of silicon solar cells[J].IEEE Transactions on Electron Devices,1998,45(8):1784. 23 Lagowski J, Edelman P, Kontkiewicz A M, et al. Iron detection in the part per quadrillion range in silicon using surface photovoltage and photodissociation of iron-boron pairs[J].Applied Physics Letters,1993,63(22):3043. 24 Angermann H, Rappich J. Wet-chemical conditioning of silicon substrates for a-Si∶H/c-Si Heterojunctions[M]∥Physics and technology of amorphous-crystalline heterostructure silicon solar cells.Springer,2012:45. 25 Kegel J, Angermann H, Stürzebecher U, et al. Over 20% conversion efficiency on silicon heterojunction solar cells by IPA-free substrate texturization[J].Applied Surface Science,2014,301:56. 26 Danel A, Jay F, Harrison S, et al. Surface passivation of c-Si textured wafer for a-Si∶H/c-Si heterojunction solar cells: Correlation between lifetime tests and cell performance of a pilot line[C]∥26th European PV Solar Energy Conference.Hamburg,Germany,2011. 27 Descoeudres A, Barraud L, De Wolf S, et al. Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment[J].Applied Physics Letters,2011,99(12):123506. 28 Schulze T F, Beushausen H N, Leendertz C, et al. Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions[J].Applied Physics Letters,2010,96(25):252102. 29 Strahm B, Andrault Y, Betzner D, et al. Uniformity and quality of monocrystalline silicon passivation by thin intrinsic amorphous silicon in a new generation plasma-enhanced chemical vapor deposition reactor[C]∥MRS Proceedings.Cambridge Univ Press,2010. 30 Descoeudres A, Barraud L, Bartlome R, et al. The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality[J].Applied Physics Letters,2010,97(18):183505. 31 Olibet S, Vallat Sauvain E, Fesquet L, et al. Properties of interfaces in amorphous/crystalline silicon heterojunctions[J].Physica Status Solidi(a),2010,207(3):651. 32 Schüttauf J A, van der Werf K H, Kielen I M, et al. Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition[J].Applied Physics Letters,2011,98(15):153514. 33 Wang Q, Page M R, Iwaniczko E, et al. Efficient heterojunction solar cells on p-type crystal silicon wafers[J].Applied Physics Letters,2010,96(1):13507. 34 Illiberi A, Sharma K, Creatore M, et al. Role of a-Si∶H bulk in surface passivation of c-Si wafers[J].Physica Status Solidi (RRL)-Rapid Research Letters,2010,4(7):172. 35 Das U K, Burrows M Z, Lu M, et al. Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si∶H thin films[J].Applied Physics Letters,2008,92(6):63504. 36 Agarwal M, Dusane R O. Passivation study of multi-crystalline silicon wafer with ia-Si∶H layer deposited by HWCVD[J].Thin Solid Films,2015,575:64. 37 Soni S K, Phatak A, Dusane R O. High deposition rate device quality a-Si∶H films at low substrate temperature by HWCVD technique[J].Solar Energy Materials and Solar Cells,2010,94(9):1512. 38 Wu B R, Wu D S, Wan M S, et al. Fabrication of selective-emitter silicon heterojunction solar cells using hot-wire chemical vapor deposition and laser doping[J].Thin Solid Films,2009,517(17):4749. 39 Maydell K V, Conrad E, Schmidt M. Efficient silicon heterojunction solar cells based on p- and n-type substrates processed at temperatures<220 ℃[J].Progress in Photovoltaics:Research and Applications,2006,14(4):289. 40 Ballif C, De Wolf S, Descoeudres A, et al. Amorphous silicon/crystalline silicon heterojunction solar cells[J].Semiconductors & Semimetals,2014,90(12):73. 41 De Wolf S. Intrinsic and doped a-Si∶H/c-Si interface passivation[M]∥Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells.Springer,2012:223. 42 Gielis J, van Den Oever P J, Hoex B, et al. Real-time study of a-Si∶H/c-Si heterointerface formation and epitaxial Si growth by spectroscopic ellipsometry, infrared spectroscopy, and second-harmonic generation[J].Physical Review B,2008,77(20):205329. 43 van den Oever P J, van de Sanden M, Kessels W. Real time spectroscopic ellipsometry on ultrathin (<50 ) hydrogenated amorphous silicon films on Si (100) and GaAs (100)[J].Journal of Applied Physics,2007,101(12):123529. 44 Cuevas A, Sinton R A. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance[J].Progress in Photovoltaics:Research and Applications,1997,5(2):79. 45 De Nicolás S M, Muoz D, Ozanne A S, et al. Optimisation of doped amorphous silicon layers applied to heterojunction solar cells[J].Energy Procedia,2011,8:226. 46 De Wolf S, Kondo M. Nature of doped a-Si∶H/c-Si interface recombination[J].Journal of Applied Physics,2009,105(10):103707. 47 刘湘娜,何宇亮,沈宗雍,等.非晶与多晶硅薄膜电导特性的研究[J].电子学报,1983(2):21. 48 Tomasi A, Sahli F, Seif J P, et al. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation[J].IEEE Journal of Photovoltaics,2016,6(1):17. 49 Yan L T, Schropp R. Changes in the structural and electrical pro-perties of vacuum post-annealed tungsten-and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering[J].Thin Solid Films,2012,520(6):2096. 50 Yamada N, Yamada M, Toyama H, et al. High-throughput optimization of near-infrared-transparent Mo-doped In2O3 thin films with high conductivity by combined use of atmospheric-pressure mist chemical-vapor deposition and sputtering[J].Thin Solid Films,2017,626:46. 51 Beh H, Hiller D, Laube J, et al. Deposition temperature dependence and long-term stability of the conductivity of undoped ZnO grown by atomic layer deposition[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(1):1B. 52 Moulin E, Bittkau K, Ghosh M, et al. Comparison of LPCVD and sputter-etched ZnO layers applied as front electrodes in tandem thin-film silicon solar cells[J].Solar Energy Materials and Solar Cells,2016,145:185. 53 Lee K S, Oh G, Kim E K. Optimization of the p+-ZnTe layer for back contacts of ZnTe thin-film solar cells[J].Journal of the Korean Physical Society,2016,69(3):416. 54 Lai K, Liu C, Lu C, et al. Characterization of ZnO: Ga transparent contact electrodes for microcrystalline silicon thin film solar cells[J].Solar Energy Materials and Solar Cells,2010,94(3):397. 55 Koida T, Fujiwara H, Kondo M. High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si∶H/c-Si heterojunction solar cells[J].Solar Energy Materials and Solar Cells,2009,93(6):851. 56 Tong C, Yun J, Chen Y, et al. Thermally diffused Al∶ZnO thin films for broadband transparent conductor[J].ACS Applied Mate-rials & Interfaces,2016,8(6):3985. 57 Kim J, Yer I. Characterization of ZnO nanowires grown on Ga-doped ZnO transparent conductive thin films: Effect of deposition temperature of Ga-doped ZnO thin films[J].Ceramics International,2016,42(2):3304. 58 Favier A, Munoz D, De Nicolás S M, et al. Boron-doped zinc oxide layers grown by metal-organic CVD for silicon heterojunction solar cells applications[J].Solar Energy Materials and Solar Cells,2011,95(4):1057. 59 Ulyashin A, Sytchkova A. Hydrogen related phenomena at the ITO/a-Si∶H/Si heterojunction solar cell interfaces[J].Physica Status Solidi (a),2013,210(4):711. 60 Christensen J S, Ulyashin A G, Maknys K, et al. Analysis of thin layers and interfaces in ITO/a-Si∶H/c-Si heterojunction solar cell structures by secondary ion mass spectrometry[J].Thin Solid Films,2006,511:93. 61 Hernández J L, Adachi D, Schroos D, et al. High efficiency copper electroplated heterojunction solar cells and modules—The path towards 25% cell efficiency[C]∥Proceedings of the 28th European Photovoltaic Solar Energy Conference.Paris,2013. 62 Ballif C, Barraud L, Descoeudres A, et al. a-Si∶H/c-Si heterojunctions: A future mainstream technology for high-efficiency crystalline silicon solar cells[J].Photovoltaic Specialists Conference,2012,42(11):001705. 63 Sebastiani M, Di Gaspare L, Capellini G, et al. Low-energy yield spectroscopy as a novel technique for determining band offsets: Application to the c-Si (100)/a-Si∶H heterostructure[J].Physical Review Letters,1995,75(18):3352. 64 Wang T H, Page M R, Iwaniczko E, et al. Toward better understanding and improved performance of silicon heterojunction solar cells[C]∥Proc.14th Workshop Crystalline Silicon Solar Cells Mo-dules.Colorado,2004. 65 Korte L. Electronic properties of ultrathin a-Si∶H layers and the a-Si∶H/c-si interface[M]∥Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells.Springer,2012:161. 66 Van de Walle C G, Yang L H. Band discontinuities at heterojunctions between crystalline and amorphous silicon[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,1995,13(4):1635. 67 Korte L, Schmidt M. Doping type and thickness dependence of band offsets at the amorphous/crystalline silicon heterojunction[J].Journal of Applied Physics,2011,109(6):63714. 68 Froitzheim A. Hetero-Solarzellen aus amorphem und kristallinem Silizium[D].Germany:Universittsbibliothek Marburg, 2003. 69 Datta A, Rahmouni M, Nath M, et al. Insights gained from computer modeling of heterojunction with instrinsic thin layer “HIT” solar cells[J].Solar Energy Materials and Solar Cells,2010,94(9):1457. 70 Kanevce A, Metzger W K. The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells[J].Journal of Applied Physics,2009,105(9):94507. 71 Kim Y, Kim S, Kim Y, et al. A study on the selective hole carrier extraction layer for application of amorphous/crystalline silicon heterojunction solar cell[J].Journal of the Korean Institute of Electrical and Electronic Material Engineers,2017,30(3):192. 72 Coletti G, Wu Y, Janssen G, et al. 20.3% MWT Silicon heterojunction solar cell—A novel heterojunction integrated concept embedding low ag consumption and high module efficiency[J].IEEE Journal of Photovoltaics,2015,5(1):55. 73 Geissbühler J, Werner J, Martin De Nicolas S, et al. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector[J].Applied Physics Letters,2015,107(8):81601. 74 Deng Q, Li Y, Shen Y, et al. Numerical simulation on n-MoS2/p-Si heterojunction solar cells[J].Modern Physics Letters B,2017,31(7):1750079. 75 Pradhan S K, Xiao B, Pradhan A K. Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells[J].Solar Energy Materials and Solar Cells,2016,144:117. |
|
|
|