RESEARCH PAPER |
|
|
|
|
|
Microstructures and Energy-storage Properties of Ba0.04Bi0.48Na0.48TiO3-SrTiO3 Ceramics |
Kui ZHENG1,Changlai YUAN2,Xingxing ZHOU1,Weiqing WANG1,Jiwen XU2,Changrong ZHOU2
|
1 Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 |
|
|
Abstract (1-x)Ba0.04Bi0.48Na0.48TiO3-xSrTiO3 (x=0.27,0.28,0.30,0.32,0.34 and 0.36) lead-free energy storage cera-mics were produced by conventional solid-state reaction processes. Microstructures, electrical properties, dielectric properties and conductivity characteristic of BBNT-xST ceramics were investigated. All of the ceramics formed solid solutions with simple perovskite structure and grain size of the ceramics is uniform and compact. Ferroelectric curves of all the ceramics showed a double hysteresis loop owning a quite low remnant polarization and high breakdown strength, demonstrating an antiferroelectric characteristic. Up to x=0.34, the largest energy-storage density of 0.977 J/cm 3 was obtained and high dielectric dispersion of the ceramic suggested a typical relaxor behavior. Electronic conductivity of the ceramic with x=0.34 was 6.02×10 -13 S/cm while the corresponding ionic conductivity 2.4×10 -8 S/cm at low frequency, denoting that the ionic conductivity was dominant in conduction processes.
|
Published: 25 January 2018
Online: 2018-01-25
|
|
|
|
|
X-ray diffraction patterns of BBNT-xST ceramics
|
|
FE-SEM micrographs of BBNT-xST ceramics
|
|
Polarization hysteresis loops of BBNT-xST ceramics
|
|
Energy-storage density (W) and efficiency (η) of BBNT-xST ceramics
|
|
Polarization hysteresis loops of BBNT-0.34ST ceramics
|
|
Energy-storage density (W) and efficiency (η) of BBNT-0.34ST ceramics as a function of external electric field
|
|
Frequency and temperature dependence of εr and tanδ of BBNT-xST ceramics
|
|
Plots of ln(1/ε-1/εm) vs. ln(T-Tm) at 10 kHz for BBNT-xST ceramics
|
|
Room-temperature resistance with logarithmic frequencies for BBNT-0.34ST ceramic
|
|
lgI-lgV curve of BBNT-0.34ST ceramic
|
Frequency/Hz | 40 | 102 | 103 | 104 | 105 | 106 | 107 | Resistance/Ω | 4.1×106 | 1.7×106 | 1.8×105 | 1.9×104 | 2.0×103 | 2.2×102 | 19 | Ion conductivity S/cm | 2.4×10-8 | 5.9×10-8 | 5.6×10-7 | 5.3×10-6 | 4.9×10-5 | 4.5×10-4 | 5.1×10-3 |
|
Ionic conductivity of BBNT-0.34ST ceramic at various frequencies
|
1 | Rodel J, Jo W, Seifert K T P , et al. Perspective on the development of lead-free piezoceramics[J]. Journal of the American Ceramic Society, 2009,92(6):1153. | 2 | Aksel E, Jones J L . Advances in lead-free piezoelectric materials for sensors and actuators[J]. Sensors, 2010,10(3):1935. | 3 | Chen M, Xiao D Q, Sun Y , et al. Recent progresses of sodium bismuth titanate based lead-free piezoelectric ceramics[J]. Journal of Functional Materials, 2007,38(8):1229(in Chinese). | 4 | 陈敏, 肖定全, 孙勇 , 等. 钛酸铋钠基无铅压电陶瓷研究近期进展[J]. 功能材料, 2007,38(8):1229. | 5 | Zhao J, Yan C J, Wang G M . Studies on the fabrication by citrate method and piezoelectric properties of (Na, Bi)TiO3 ceramic[J]. China Ceramics, 2010,46(4):47(in Chinese). | 6 | 赵俊, 严春杰, 王戈明 . Na0.5Bi0.5TiO3陶瓷介电性能的实验研究[J]. 中国陶瓷, 2010,46(4):47. | 7 | Takenaka T, Sakat K . Dielectric, piezoelectric and pyroelectric properties of (Na1/2Bi1/2)TiO3-based ceramics[J]. Ferroelectrics, 1989,20(1):1016. | 8 | Ranjan R, Dviwedi A . Structure and dielectric properties of (Na0.5-Bi0.5)1-xBaxTiO3:0≤x≤0.10[J]. Solid State Communications, 2005,135(6):394. | 9 | Chu B J, Li G R, Jiang X P , et al. Piezoelectric property and relaxation phase transition of (Na1/2Bi1/2)TiO3-BaTiO3 system[J]. Journal of Inorganic Materials, 2000,15(5):815(in Chinese). | 10 | 初保进, 李国荣, 江向平 , 等. ( Na1/2Bi1/2)TiO3-BaTiO3系陶瓷压电性及弛豫相变研究[J]. 无机材料学报, 2000,15(5):815. | 11 | Zhao M L, Wang C L, Ai S T , et al. Dielectric and piezoelectric properties of Na0.5Bi0.5TiO3-BaTiO3 ceramics[J]. Journal of Inorga-nic Materials, 2002,17(1):61(in Chinese). | 12 | 赵明磊, 王春雷, 艾树涛 , 等. Na0.5Bi0.5TiO3-BaTiO3陶瓷的介电和压电性能研究[J]. 无机材料学报, 2002,17(1):61. | 13 | Takenaka T, Maruyama K . ( Na1/2Bi1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Phy-sics, 1991,30(9B):2236. | 14 | Jo W, Schaab S, Sapper E , et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3[J]. Journal of Applied Physics, 2011,110(7):074106-1. | 15 | Li Y M, Chen W, Xu Q , et al. Investigation of phase transition in Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system material[J]. Journal of Functional Materials, 2004,35(3):341(in Chinese). | 16 | 李月明, 陈文, 徐庆 , 等. Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系铁电体的相变研究[J]. 功能材料, 2004,35(3):341. | 17 | Smolenskii G A, Isupov V A, Agranovskaya A I , et al. New ferroelectrics of complex composition[J]. Soviet Physics Solid State, 1961,2(11):2651. | 18 | Smolensky G . Ferroelectrics with diffuse phase transition[J]. Fer-roelectrics, 1984,53(1):129. | 19 | Chou X J, Zhai J W, Yao X . Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications[J]. Materials Chemistry & Physics, 2008,109(1):125. | 20 | Khemakhem L, Kabadou A, Maalej A , et al. New relaxor ceramic with composition BaTi1-x(Zn1/3Nb2/3)xO3[J]. Journal of Alloys and Compounds, 2008,452(2):451. | 21 | Chen C H, Amine K . Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate[J]. Solid State Ionics, 2001,144(1):51. | 22 | Chen K, Huang M, Shen Y , et al. Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder[J]. Solid State Ionics, 2012,235(21):8. |
|
|
|
|