REVIEW PAPER |
|
|
|
|
|
Thermal Boundary Conductance of a New Generation of High Thermal Conductivity Metal Matrix Composites: A Review |
CHANG Guo1, DUAN Jialiang1, WANG Luhua1, WANG Xitao2, ZHANG Hailong1
|
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083; 2 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083 |
|
|
Abstract Thermal boundary resistance(TBC) exists at interface sandwiched between two materials with different physical properties. The TBC greatly affects the heat transfer and largely determines the thermal properties of the composites. Diamond particles reinforced metal matrix composites (MMCs) give full play to the advantages of high thermal conductivity and low thermal expansion coefficient of diamond, and it has the potential to achieve a high thermal conductivity and a thermal expansion coefficient compa-tible with semiconductor. This can meet the ever-increasing demands of cooling capacity of modern electronic devices. Consequently, MMCs have attracted widespread concern as a new generation of electronic packaging materials. TBC(the reciprocal of thermal boundary resistance) is a key factor in determining the heat conduction ability of composite. In addition, the TBC is difficult to deal with since the preparation process of composite, interface modification methods (metal matrix alloying or diamond surface metallization) and modifying metal species can all have an effect. In this paper, the latest achievements in both theoretical and experimental researches of TBC are discussed. Meanwhile, the main questions faced in the investigation of diamond/metal composites are also proposed.
|
Published: 10 April 2017
Online: 2018-05-08
|
|
|
|
1 Li Y, Wong C P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications[J]. Mater Sci Eng R: Rep,2006, 51(1-3):1. 2 Wu H, Chiang S, Han W, et al. Surface iodination: A simple and efficient protocol to improve the isotropically thermal conductivity of silver-epoxy pastes[J]. Compos Sci Technol,2014,99:109. 3 Gu J W, Li N, Tian L D, et al. High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites[J]. Royal Soc Chem,2015,5:36334. 4 Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials[J]. Solid State Commun,2012,152(15):1331. 5 Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Prog Polym Sci,2011,36(7):914. 6 Meng W J, Huang Y, et al. Polymer composites of boron nitride nanotubes and nanosheets[J]. J Mater Chem C,2014,2:10049. 7 Mei Shengfu, Gao Yunxia, Deng Zhongshan, et al. Experimental investation on the heat disspation performance of liquid metal filled thermal grease[J]. J Eng Thermophys,2015,36(3):624(in Chinese). 梅生福,高云霞,邓中山,等. 液态金属填充型硅脂导热性能实验研究[J]. 工程热物理学报,2015,36(3):624. 8 Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics[J]. Mater Today,2014,17(4):163. 9 Hung M T, Choi O, Ju Y S, et al. Heat conduction in graphite-na-noplatelet-reinforced polymer nanocomposites[J]. Appl Phys Lett,2006,89(2):23117. 10 Losego M D, Moh L, Arpin K A, et al. Interfacial thermal conduc-tance in spun-cast polymer films and polymer brushes[J]. Appl Phys Lett,2010,97(1):11908. 11 Weisheit M, Fahler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets[J]. Science,2007,315(5810):349. 12 Wang Xitao, Zhang Yang, et al. Review on the progress of diamond particles dispersed metal matix composites with superior high thermal conductivity[J]. J Funct Mater, 2014,45(7):7001(in Chinese). 王西涛,张洋,车子璠,等. 金刚石颗粒增强金属基高导热复合材料的研究进展[J]. 功能材料,2014,45(7):7001. 13 Zweben C. High-performance thermal management materials crucial for future packaging new, high-performance materials solve key packaging problems[J]. Adv Packaging,2006,15(2):20. 14 Chen G. Nanoscale energy transport and conversion[M]. New York: Oxford University Press,2005. 15 Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport[J]. J Appl Phys,2003,93(2):793. 16 Zhu J. Study on thermal transportion mechanism of solid-liquid interfaces by femtosecond laser pump and probe method[D]. Beijing: Chinese Academy of Science(Institute of Engineering Thermophy-sics),2011(in Chinese). 祝捷. 飞秒激光抽运探测法纳米材料及界面热输运机理研究[D]. 北京:中国科学院研究生院(工程热物理研究所),2011. 17 Maxwell J C. A treatise on electricity and magnetism(3rd edition)[M]. New York: Dover Publications,1954. 18 Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal[J]. J Compos Mater,1987,21:508. 19 Kapitza P L. The study of heat transfer in helium Ⅱ[J]. J Phys (Moscow),1941,4:181. 20 Pollack G L. Kapitza resistance[J]. Rev Modern Phys,1969,41(1):48. 21 Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. J Heat Transfer,1993,115(4):835. 22 Khalatnikov I M. Heat exchange between a solid and He Ⅱ[J].Soviet Phys JETP,1952,22(6):687. 23 Swartz E T, Pohl R O. Thermal boundary resistance[J]. Rev Mo-dern Phys,1989,61(3):605. 24 Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K[J]. Phys Rev B,1993,48(22):16373. 25 Lyeo H K, Cahill D G. Thermal conductance of interfaces between highly dissimilar materials[J]. Phys Rev B,2006,73:144301. 26 Choi W I, Kim K, Narumanchi S. Thermal conductance at atomically clean and disordered silicon/aluminum interfaces: A molecular dynamics simulation study[J]. J Appl Phys,2012,112(5):54305. 27 Maiti A, Mahan G D, Pantelides S T. Dynamical simulations of nanequilibrum processes-heat flow and the kapitza resistance across grain boundaries[J]. Solid State Commun,1997,102(7):517. 28 Schelling P K, Phillpot S R. Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation[J]. J Am Ceram Soc,2001,84(12):2997. 29 Oligschleger C, Sch?n J C. Simulation of thermal conductivity and heat transport in solids[J]. Phys Rev B,1999,59(6):4125. 30 Jund P, Jullien R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Phys Rev B,1999,59(21):13707. 31 Baranyai A S. Heat flow studies for large temperature gradients by molecular dynamics simulation[J]. Phys Rev E,1996,54(6):6911. 32 Poetzsch R H H, B?ttger H. Interplay of disorder and anharmonicity in heat conduction[J]. Phys Rev B,1994,50(21):15757. 33 Che J, ?ag?in T, Deng W, et al. Thermal conductivity of diamond and related materials from molecular dynamics simulations[J]. J Chem Phys,2000,113(16):6888. 34 Li J, Porter L, Sidney Y. Atomistic modeling of finite-temperature properties of crystalline b-SiC Ⅱ. Thermal conductivity and effects of point defects[J]. J Nuclear Mater,1998,255:139. 35 Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals[J]. Phys Rev B,2000,61:2651. 36 Che J W, ?ag?in T, Goddard W A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology,2000,11:65. 37 Ladd A J C, Moran B. Lattice thermal conductivity: A comparison of molecular dynamics and anhaimonic lattice dynamics[J]. Phys Rev B,1986,34(8):5058. 38 Vogelsang R, Hoheisel C, Ciccotti G. Thermal conductivity of the Lennard-Jones liquid by molecular dynamics calculations[J]. J Chem Phys,1987,86(11):6371. 39 Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-le-vel simulation methods for computing thermal conductivity[J]. Phys Rev B,2002,65:144301. 40 Losego M D, Grady M E, et al. Effects of chemical bonding on heat transport across interfaces[J]. Nat Mater,2012,11(6):502. 41 Monachon C, Weber L. Influence of diamond surface termination on thermal boundary conductance between Al and diamond[J]. J Appl Phys,2013,113(18):183504. 42 Monachon C, Weber L. Thermal boundary conductance between refractory metal carbides and diamond[J]. Acta Mater,2014,73:337. 43 Kagnov M I, Lifshitz I M, Tanatarov M V. Relaxation between electrons and crystalline lattices[J]. Soviet Phys JETP,1957,4:173. 44 Anisimov S I, Kapeliovich B L, Perel'Man T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Soviet Phys JETP,1974,39(2):776. 45 Monachon C, Schusteritsch G, Kaxiras E, et al. Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces[J]. J Appl Phys,2014,115(12):123509. 46 Monachon C, Weber L. Influence of a nanometric Al2O3 interlayer on the thermal conductance of an Al/(Si, Diamond) interface[J]. Adv Eng Mater,2015,17(1):68. 47 Monachon C, Weber L. Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum[J]. Diamond Related Mater,2013,39:8. 48 Monachon C, Weber L. Thermal boundary conductance of transition metals on diamond[J]. Emerging Mater Res,2012,1(2):89. 49 Monachon C, Hojeij M, Weber L. Influence of sample processing parameters on thermal boundary conductance value in an Al/AlN system[J]. Appl Phys Lett,2011,98(9):91905. 50 Ujihara K. Reflectivity of metals at high temperatures[J]. J Appl Phys,1972,43(5):2376. 51 Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scrip Mater,2015,109:72. 52 Hopkins P E, Duda J C, Petz C W, et al. Controlling thermal conductance through quantum dot roughening at interfaces[J]. Phys Rev B,2011,84:35431. 53 Duda J C, Hopkins P E. Systematically controlling kapitza conduc-tance via chemical etching[J]. Appl Phys Lett,2012,100(11):111602. 54 Hopkins P E, Phinney L M, Serrano J R, et al. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces [C]∥14th International Heat Transfer Conference. Washington,2010. 55 Collins K C, Chen S, Chen G. Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces[J]. Appl Phys Lett, 2010,97(8):83102. 56 Kawarada H. Hydrogen-terminated diamond surfaces and interfaces [J]. Surf Sci Rep,1996,26:205. 57 Nichols B M, Butler J E, Russell J N, et al. Photochemical functionalization of hydrogen-terminated diamond surfaces: A structural and mechanistic study[J]. J Phys Chem B,2005,109(44):20938. 58 Zhang Y, Zhang H L, Wu J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scrip Mater,2011,65(12):1097. 59 Qi Y, Hector L G. Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces[J]. Phys Rev B,2003,68:201403. 60 Maier F, Ristein J, Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond(100) surfaces[J]. Phys Rev B,2001,64:1. 61 Prasher R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts[J]. Appl Phys Lett,2009,94(4):41905. 62 Xia Y, Song Y, Lin C, et al. Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J]. Trans Nonferrous Met Soc China,2009,19(5):1161. 63 Che Q L, Zhang J J, Chen X K, et al. Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Mater Sci Semiconductor Process,2015,33:67. 64 Abyzov A M, Kruszewski M J, Ciupiński?, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Mater Des,2015, 76:97. 65 Kang Q, He X, Ren S, et al. Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles[J]. Mater Characterization,2015,105:18. 66 Shen X, He X, Ren S, et al. Effect of molybdenum as interfacial ele-ment on the thermal conductivity of diamond/Cu composites[J]. J Alloys Compd,2012,529:134. 67 Kang Q, He X, Ren S, et al. Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond composites[J]. J Alloys Compd,2013,576:380. 68 Sinha V, Spowart J E. Influence of interfacial carbide layer characteristics on thermal properties of copper-diamond composites[J]. J Mater Sci,2013,48(3):1330. 69 Schubert T, Ciupiński?, Zieliński W, et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J]. Scrip Mater,2008,58(4):263. 70 Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X=Cr, B) diamond composites[J]. Scrip Mater,2007,57(11):988. 71 Raza K, Khalid F A. Optimization of sintering parameters for diamond-copper composites in conventional sintering and their thermal conductivity[J]. J Alloys Compd,2014,615:111. 72 Chu K, Jia C, Guo H, et al. On the thermal conductivity of Cu-Zr/diamond composites[J]. Mater Des,2013,45:36. 73 Cengel Y A. Heat transfer:A practical application[M]. New York: McgrGraw-Hill,2002:71. (责任编辑 汪禹汛) |
|
|
|