RESEARCH PAPER |
|
|
|
|
|
In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates |
DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue
|
Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 |
|
|
Abstract The solidification process of the GH3625 superalloy was in-situ observed at different cooling rates (30 ℃/min, 100 ℃/min and 200 ℃/min ) by means of confocal laser scanning microscope combined with an infrared image furnace. Differential scanning calorimeter (DSC), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were adopted to observe the solidified microstructure and the regularity of precipitated phases. The results showed that the liquidus temperature of GH3625 superalloy was 1 356.5 ℃, and the relationship between the variation of solid phase content at the free surface and temperature as well as time was in accordance with Avrami equation. With the decrease of temperature, the precipitation sequence of phases were γ matrix phase, carbides and Laves phase. In the solidification process of GH625 superalloy, with the increasing cooling rate, the dendritic structure refined, the dendrite arm spacing decreased, component segregation reduced, the Laves phase distribution was more dispersed, and mainly precipitated eutectic Laves phase. A large number of Nb segregation occurred in the final period of solidification at the interdendritic and grain boundaries, and this mainly contributes to the formation of Laves phase.
|
Published: 25 December 2017
Online: 2018-05-08
|
|
|
|
1 郭建亭. 高温合金材料学[M]. 北京:科学出版社, 2008:4. 2 中国航空材料手册编委会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:238. 3 Peng Z, Xie F, Zhang J, et al. Effect of undercooling on microstructure evolution in IN718 superalloy[J]. Rare Metal Mater Eng, 2013,42(10):1988. 4 Sun W R, Guo S R, Lu D Z, et al. Effect of sulfur on the solidification and segregation in Inconel 718 alloy[J]. Maters Lett, 1997,31(3):195. 5 Silva C C, Miranda H C D, Motta M F, et al. New insight on the solidification path of an alloy 625 weld overlay[J]. J Mater Res Technol, 2013,2(3):228. 6 Wang L, Dong J X, Li C Q. Effect of cooling rate on the segregation and Rayleigh number of IN718 during solidification[J]. J University of Science and Technology Beijing, 2007,29(12):1222(in Chinese). 王玲, 董建新, 李传起. 冷速对IN718凝固过程中偏析和Rayleigh数的影响[J]. 北京科技大学学报, 2007,29(12):1222. 7 Kim J H, Kim S G, Inoue A. In site observation of solidification behavior in undercooled Pd-Cu-Ni-P alloy by using a confocal scanning laser microscope[J]. Acta Mater, 2001,49(4):615. 8 Huang F X, Zhang J M, Wang X H, et al. In-situ observation of engulfment and pushing of non-metallic inclusions at solidifying interface[J]. J Iron Steel Res, 2008,20(5):14(in Chinese). 黄福祥, 张炯明, 王新华, 等. 夹杂物在钢液凝固前沿行为的原位动态观察[J]. 钢铁研究学报, 2008,20(5):14. 9 Miao Z J. Study on solidification segregation and homogenization process of IN718 series superalloy[D]. Shanghai: Shanghai Jiaotong University, 2011(in Chinese). 繆竹骏. IN718系列高温合金凝固偏析及均匀化处理工艺研究[D]. 上海: 上海交通大学,2011. 10Wang W, Xuan F Z, Miao Z J, et al. In-site observation of solidification process of GH4169 superalloy at different cooling rates[J]. Mater Mech Eng, 2011,35(9):65(in Chinese). 王威, 轩福贞, 繆竹骏, 等. 不同冷速下GH4169高温合金凝固过程的原位观察[J]. 机械工程材料, 2011,35(9):65. 11Shibata H, Yin H, Yoshinaga S, et al. In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt/solid interface[J]. ISIJ Int, 1998,38(2):149. 12Huang Q J, Liu G Q. Application of microsoft word in quantitative microstructure analysis[J]. Chin J Stereology Image Anal, 2002,7(3):182(in Chinese). 黄启今, 刘国权. 通用软件 Microsoft Word 在显微组织定量分析中的应用[J]. 中国体视学与图像分析, 2002,7(3):182. 13胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 1991:101. 14Miao Z J, Shan A D, Wang W, et al. Solidification process of conventional superalloy by confocal scanning laser microscope[J]. Trans Nonferrous Met Soc China, 2011,21(2):236. 15Yi T L, Pu L N, Zhu G L. Segregation of niobium in laser cladding Inconel 718 superalloy[J]. Trans Nonferrous Met Soc China, 2016, 26(2):431. 16Andenna G. Primary and secondary dendrite spacing of Ni-based superalloy single crystals[J]. J Serbian Chem Soc, 2009,74(1):61. 17Aminorroaya S, Dippenaar R. A novel approach to simulate segregation at the centreline of continuously cast steel using laser-scanning confocal microscopy[J]. J Microscopy, 2007,227(2):87. 18Chen S N, Lai C, Yu H, et al. Effect of cooling rate on non-equilibrium solidified microstructure of Ni-Nb alloy[J]. Rare Metal Mater Eng, 2015,44(6):1539(in Chinese). 陈胜娜, 赖存, 余欢, 等. 冷却速率对Ni-Nb合金非平衡凝固组织的影响[J]. 稀有金属材料与工程, 2015,44(6):1539. 19Cleslak M J, Headley T J. A melting and solidification study of alloy 625[J]. Metall Trans A, 1988,19(9):2319. 20Dong J X, Zhang M C, Zeng Y P. Calculation of Nb segregation behvaior in liquid phase for Nb-rich superalloys[J]. J University of Science and Technology Beijing, 2005,27(2):198(in Chinese). 董建新, 张麦仓, 曾燕屏. 含铌高温合金液相中铌偏聚行为[J]. 北京科技大学学报, 2005, 27(2):198. 21高义民. 金属凝固原理[M]. 西安:西安交通大学出版社, 2007:50. 22Schirra J J, Caless R H, Hatala R W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718[C]∥Superalloys, 1991:375.
|
|
|
|