REVIEW PAPER |
|
|
|
|
|
Applying Freeze-casting Technique to the Fabrication of Nacre-like Lamellar Structured Ceramic Composites: A State-of-the-art Review |
ZHANG Xun, LIU Shuhai, XIAO Huaping
|
College of Mechanical and Transportation Engineering, China University of Petroleum Beijing, Beijing 102249 |
|
|
Abstract Shell nacre is a natural layered composite and has a layered hierarchical assembly structure similar to the “brick and mortar” structure with the alternation of hard and soft phase, which endows it with excellent mechanical properties. Through the bionic study of shell nacre, people have used different technologies(such as freeze-casting technology) to prepare a series of bionic and layered composite materials with high strength and toughness, which show broad application prospects in aerospace, military, civil use, mechanical engineering and other fields. The performance and facture mechanism of shell nacre structure are reviewed firstly. Then the development process, mechanism, control parameters, device design and overall processing steps of freeze-casting technology are introduced. On this basis, the stability, apparent density and porosity of porous ceramics, used for preparing bionic and la-yered composite materials, is introduced. Meanwhile, the characteristics and applications of porous ceramics, ceramic/metal layered composites and ceramic/polymer layered composites are reviewed. Lastly, the analysis and summary of problems appeared in the preparation of ceramic with nacre-like lamellar structure was made, and the future development and research trend of this composite is predicted.
|
Published: 10 July 2017
Online: 2018-05-04
|
|
|
|
1 Chen B, Dong Q J, Wu X J, et al. Layered microstructure of clam shell and bionic research of ceramic/polymer composites[J].J Funct Mater,2004,35(s1):2345(in Chinese). 陈斌, 董勤军, 吴晓金, 等. 蛤蜊壳的层状微结构与陶瓷/聚合物复合材料的仿生研究[J]. 功能材料,2004,35(s1):2345. 2 Barthelat F, Espinosa H D. An experimental investigation of deformation and fracture of nacre-mother of pearl[J]. Experimental Mechan,2007,47(3):311. 3 Nalla R K, Kinney J H, Ritchie R O. Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms[J]. Biomaterials,2003,24(22):3955. 4 Nalla R K, Kruzic J J, Kinney J H, et al. Mechanistic aspects of fracture and R-curve behavior in human cortical bone[J]. Biomate-rials,2005,26(2):217. 5 陈斌, 吴晓金, 吴新燕,等. 贝壳的层状微结构与仿生陶瓷/聚合物复合材料的研究[C]// 全国首届青年复合材料学术交流会论文集.2007:30. 6 Zhang H. Preparation and kinetic analysis of AZ91/SiC layered composites using ice template [D]. Changchun: Jilin University,2016(in Chinese). 张恒. 利用冰模板制备AZ91/SiC层状复合材料及动力学分析[D]. 长春:吉林大学,2016. 7 Zheng X, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical metamaterials.[J]. Science,2014,344(6190):1373. 8 Dastjerdi A K, Rabiei R, Barthelat F. The weak interfaces within tough natural composites: Experiments on three types of nacre[J]. J Mechan Behav Biomed Mater,2012,19(4):50. 9 Xu L P, Peng J, Liu Y, et al. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity[J]. ACS Nano,2013, 7(6):5077. 10 Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Mater,2014, 13(5):508. 11 Sarikaya M, Aksay I A. Design and processing of materials[J]. Biomimet Design Process Mater,1995(1):145. 12 Cheng Q, Wu M, Li M, et al. Ultratough artificial nacre based on conjugated cross-linked graphene oxide[J]. Angew Chem Int Ed,2013,52(13):3750. 13 Wang R Z, Wen H B, Cui F Z, et al. Observations of damage morphologies in nacre during deformation and fracture[J]. J Mater Sci, 1995,30(9):2299. 14 Huang Z. Origin of flaw-tolerance in nacre[J]. Scientific Reports,2013,3(4):1693. 15 Currey J D. Mechanical properties of mother of pearl in tension[J]. Proceedings of the Royal Society of London. Series B. Biological Sciences,1977,196(1125):443. 16 He J S, Feng X M, Ai T T. Frozen casting preparation of porous alumina ceramics[J]. Mater Rev:Res,2011,25(10):103(in Chinese). 何俊升, 冯小明, 艾桃桃. 冰冻铸造法制备 Al2O3 多孔陶瓷[J]. 材料导报:研究篇,2011,25(10):103. 17 Xi J W. Preparation of lamellar Al-Si(-Mg)/Al2O3 composites using freeze casting and melt infiltration techniques[D]. Changchun: Jilin University,2014(in Chinese). 奚巨伟. 冷冻铸造—熔渗技术制备层状 Al-Si (-Mg)/Al2O3 复合材料[D]. 长春:吉林大学,2014. 18 Chen Z M, Xue B, Yang S Y. Frozen casting and its basic technological problems[J]. Modern Cast Iron,2005,25(5):26(in Chinese). 陈宗民, 薛冰, 杨思一. 冷冻铸造及其基本工艺技术问题[J]. 现代铸铁,2005,25(5):26. 19 Liu R, Xu T, Wang C A. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method[J]. Ceram Int,2016,42(2):2907. 20 Jenei P, Choi H, Tóth A, et al. Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting[J]. J Mechan Behav Biomed Mater,2016,63:407. 21 Naleway S E, Fickas K C, Maker Y N, et al. Reproducibility of ZrO2-based freeze casting for biomaterials[J]. Mater Sci Eng C,2016, 61:105. 22 Yu J, Li S, Lv Y, et al. Preparation of high-temperature resistance silicon nitride ceramic composite by freeze casting[J]. J Chin Ceram Soc,2015,43(6):723. 23 Ballman H. Unique new forming technique[J]. Ceram Age,1957,791:36. 24 Novich B E, Sundback C. Quickset injection moulding of high performance ceramics[J]. Ceram Trans,1991,26:157. 25 Jones R W. Near net shape ceramics by freeze casting[J]. Adv Sci Technol,1999,20(2):117. 26 Meyers M A, Chen P Y, Lopez M I, et al. Biological materials: A materials science approach[J]. J Mechan Behav Biomed Mater, 2011,4(5):626. 27 Stupp S I, Braun P V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors[J]. Science,1997, 277(5330):1242. 28 Kaplan D L. Mollusc shell structures: Novel design strategies for synthetic materials[J]. Curr Opin Solid State Mater Sci,1998, 3(3):232. 29 Tang Z, Kotov N A, Magonov S, et al. Nanostructured artificial nacre[J]. Nature Mater,2003,2(6):413. 30 Launey M E, Munch E, Alsem D H, et al. Designing highly toug-hened hybrid composites through nature-inspired hierarchical complexity[J]. Acta Mater,2009,57(10):2919. 31 Bennadji-Gridi F, Smith A, Bonnet J P. Montmorillonite based artificial nacre prepared via a drying process[J]. Mater Sci Eng B,2006, 130(1):132. 32 Almqvist N, Thomson N H, Smith B L, et al. Methods for fabricating and characterizing a new generation of biomimetic materials[J]. Mater Sci Eng C,1999,7(1):37. 33 Barthelat F, Tang H, Zavattieri P D, et al. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure[J]. J Mechan Phys Solids,2007,55(2):306. 34 Cooper G A. The fracture toughness of composites reinforced with weakened fibres[J]. J Mater Sci,1970,5(8):645. 35 Cheng Y, Xiao H N, Li Y P. Layered composite ceramic toughening mechanism and preparation process [J]. J Ceram,2003,24(2):111(in Chinese). 成茵, 肖汉宁, 李玉平. 层状复合陶瓷增韧机理和制备工艺的研究[J]. 陶瓷学报,2003,24(2):111. 36 Pateras S K, Howard S J, Clyne T W. The contribution of bridging ligament rupture to energy absorption during fracture of metal-ceramic laminates[J]. Key Eng Mater,1996,127:1127. 37 Maxwell W A, Gurnick R S, Francisco A C. Preliminary investigation of the ‘freeze-casting’ method for forming refractory powders[J]. Technical Report Archive Image Library,1954,5321(2855):1. 38 Chen Z, Wang X, Atkinson A, et al. Spherical indentation of porous ceramics: Elasticity and hardness[J]. J Eur Ceram Soc,2016, 36(6):1435. 39 Macchetta A, Turner I G, Bowen C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method[J]. Acta Biomater,2009,5(4):1319. 40 Szepes A, Ulrich J, Farkas Z, et al. Freeze-casting technique in the development of solid drug delivery systems[J]. Chem Eng Proces-sing: Process Intensification,2007,46(3):230. 41 Moritz T, Richter H J. Ice-mould freeze casting of porous ceramic components[J]. J Eur Ceram Soc,2007,27(16):4595. 42 Yang T Y, Lee J M, Yoon S Y, et al. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique[J]. J Mater Sci: Mater Med,2010,21(5):1495. 43 Gay G, Azouni M A. Forced migration of nonsoluble and soluble metallic pollutants ahead of a liquid-solid interface during unidirectional freezing of dilute clayey suspensions[J]. Crystal Growth Design,2002,2(2):135. 44 Karlsson J O. Cryopreservation: Freezing and vitrification[J]. Scien-ce,2002,296(5568):655. 45 Davis M E. Ordered porous materials for emerging applications[J]. Nature,2002,417(6891):813. 46 Cooper A I. Porous materials and supercritical fluids[J]. Adv Mater,2003,15(13):1049. 47 Zhang H, Cooper A I. Synthesis and applications of emulsion-templated porous materials[J]. Soft Matter,2005,1(2):107. 48 Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Adv Mater,2006,18(16):2073. 49 Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Adv Mater,2006,18(14):1793. 50 White R J, Budarin V, Luque R, et al. Tuneable porous carbonaceous materials from renewable resources[J]. Chem Soc Rev,2009, 38(12):3401. 51 White R J, Luque R, Budarin V L, et al. Supported metal nanoparticles on porous materials. methods and applications[J]. Chem Soc Rev,2009,38(2):481. 52 Thomas A. Functional materials: From hard to soft porous frameworks[J]. Angew Chem Int Ed,2010,49(45):8328. 53 Bae Y S, Snurr R Q. Development and evaluation of porous mate-rials for carbon dioxide separation and capture[J]. Angew Chem Int Ed,2011,50(49):11586. 54 Boissiere C, Grosso D, Chaumonnot A, et al. Aerosol route to functional nanostructured inorganic and hybrid porous materials[J]. Adv Mater,2011,23(5):599. 55 Fukasawa T,Ando M,Ohji T. Filtering properties of porous cera-mics with unidirectionally aligned pores[J]. J Ceram Soc Japan,2002,110(1283):627. 56 Fukasawa T, Ando M, Ohji T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. J Am Ceram Soc,2001,84(1):230. 57 Fukasawa T, Deng Z Y, Ando M, et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process[J]. J Am Ceram Soc,2002,85(9):2151. 58 Fukasawa T, Deng Z Y, Ando M, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. J Mater Sci,2001,36(10):2523. 59 Deville S, Saiz E, Nalla R K, et al. Freezing as a path to build complex composites[J]. Science,2006,311(5760):515. 60 Zhang H, Hussain I, Brust M, et al. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles[J]. Nat Mater,2005,4(10):787. 61 Omatete O O, Janney M A, Strehlow R A. Gelcasting: A new ceramic forming process[J]. Am Ceram Soc Bull,1991,70(10):1641. 62 Young A C, Omatete O O, Janney M A, et al. Gelcasting of alumina[J]. J Am Ceram Soc,1991,74(3):612. 63 Morissette S L, Lewis J. Chemorheology of aqueous-based alumina-poly (vinyl alcohol) gelcasting suspensions[J]. J Am Ceram Soc, 1999,82(3):521. 64 Li C, He J. Easy replication of pueraria lobata toward hierarchically ordered porous γ-Al2O3[J]. Langmuir,2006,22(6):2827. 65 Rathod R P, Annapure U S. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits[J]. LWT - Food Science and Technology,2016,66:114. 66 Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues[J]. Adv Eng Mater,2008,10(3):155. 67 Wegst U G K, Schecter M, Donius A E, et al. Biomaterials by freeze casting[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,2010,368(1917):2099. 68 Worster M G, Wettlaufer J S. Natural convection, solute trapping, and channel formation during solidification of saltwater[J]. J Phys Chem B,1997,101(32):6132. 69 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials[J]. Science,2008,322(5907):1516. 70 Deville S, Saiz E, Tomsia A P. Ice-templated porous alumina structures[J]. Acta Mater,2007,55(6):1965. 71 Araki K, Halloran J W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique[J]. J Am Ceram Soc,2005,88(5):1108. 72 Yoon B H, Choi W Y, Kim H E, et al. Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering[J]. Scripta Mater,2008,58(7):537. 73 Hong C, Zhang X, Han J, et al. Ultra-high-porosity zirconia cera-mics fabricated by novel room-temperature freeze-casting[J]. Scripta Mater,2009,60(7):563. 74 Araki K, Halloran J W. New freeze-casting technique for ceramics with sublimable vehicles[J]. J Am Ceram Soc,2004,87(10):1859. 75 汪长安, 陈瑞峰, 刘伟渊, 等. 凝胶注模新工艺制备超轻质氧化铝陶瓷[C]//第十五届全国复合材料学术会议论文集 (上册),2008. 76 Liu W Y, Wang C A, Zhou L Z, et al. Preparation of high porosity and high strength porous alumina ceramics [J].Bull Chinese Ceram Soc,2008,36(12):1764(in Chinese). 刘伟渊, 汪长安, 周立忠, 等. 高气孔率及高强度多孔氧化铝陶瓷的制备[J]. 硅酸盐学报,2008,36(12):1764. 77 Surzhikov A P, Ghyngazov S A, Frangulyan T S, et al. Investigation of sintering behavior of ZrO2 (Y) ceramic green body by means of non-isothermal dilatometry and thermokinetic analysis[J]. J Thermal Analys Calorimetry, 2017,128(2):787. 78 Ishiguro H, Rubinsky B. Mechanical interactions between ice crystals and red blood cells during directional solidification[J]. Cryobio-logy,1994,31(5):483. 79 Lasalle A, Guizard C, Maire E, et al. Particle redistribution and structural defect development during ice templating[J]. Acta Mater, 2012,60(11):4594. 80 Zuo K H, Zeng Y P, Jiang D. Properties of microstructure-controllable porous yttria-stabilized ziroconia ceramics fabricated by freeze casting[J]. Int J Appl Ceram Technol,2008,5(2):198. 81 Sofie S W, Dogan F. Freeze casting of aqueous alumina slurries with glycerol[J]. J Am Ceram Soc,2001,84(7):1459. 82 Moon J W, Hwang H J, Awano M, et al. Preparation of NiO-YSZ tubular support with radially aligned pore channels[J]. Mater Lett, 2003,57(8):1428. 83 Peppin S S L, Wettlaufer J S, Worster M G. Experimental verification of morphological instability in freezing aqueous colloidal suspensions[J]. Phys Rev Lett,2008,100(23):238301. 84 Waschkies T, Oberacker R, Hoffmann M J. Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities[J]. Acta Mater,2011,59(13):5135. 85 Xue W, Huang Y, Xie Z, et al. Al2 O3 ceramics with well-oriented and hexagonally ordered pores: The formation of microstructures and the control of properties[J]. J Eur Ceram Soc,2012,32(12):3151. 86 Li W, Lu K, Walz J Y. Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite-silica nanocomposites[J]. J Mater Sci,2012,47(19):6882. 87 Li W, Lu K, Walz J Y. Effects of solids loading on sintering and properties of freeze-cast kaolinite-silica porous composites[J]. J Am Ceram Soc,2013,96(6):1763. 88 Deville S. Freeze-casting of porous biomaterials: Structure, properties and opportunities[J]. Materials,2010,3(3):1913. 89 Deville S, Maire E, Bernard-Granger G, et al. Metastable and unstable cellular solidification of colloidal suspensions[J]. Nature Mater,2009,8(12):966. 90 Hench L L, Polak J M. Third-generation biomedical materials[J]. Science,2002,295(5557):1014. 91 Xiao H N. High-temperature friction and wear of SiC and mechanism analysis[J].Bull Chinese Ceram Soc,1997,25(2):157(in Chinese). 肖汉宁. 碳化硅陶瓷的高温摩擦磨损及机理分析[J]. 硅酸盐学报,1997,25(2):157. 92 Xiao H N. Research on alumina ceramic high-temperature wear and self-lubricating mechanism[J]. J Inorg Mater,1997,12(3):420(in Chinese). 肖汉宁. 氧化铝陶瓷的高温磨损与自润滑机理研究[J]. 无机材料学报,1997,12(3):420. 93 肖汉宁. 陶瓷材料的高温自润滑性研究[C]//第三届中国功能材料及其应用学术会议论文集,1998:961. 94 Xiao H N, Tan W, Yi W W. Study on materials design and perfor-mance of high alumina ceramic wear [J]. Ceram Sinica,2004,25(2): 81(in Chinese). 肖汉宁, 谭伟, 易雯雯. 高耐磨氧化铝陶瓷的材料设计与性能研究[J]. 陶瓷学报,2004,25(2):81. 95 Xiao H N. Alumina ceramic wear plastic deformation at high tempe-rature and recrystallization process [J]. Tribology, 1997,17(3):193 (in Chinese). 肖汉宁. 氧化铝陶瓷在高温磨损过程中的塑性变形与再结晶[J]. 摩擦学学报,1997,17(3):193. |
|
|
|