REVIEW PAPER |
|
|
|
|
|
Advances in Nitride Films of High Entropy Alloy |
REN Bo1,2, ZHAO Ruifeng1,3, LIU Zhongxia3
|
1 School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191;
2 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052;
3 Materials Physics Key Laboratory of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 |
|
|
Abstract Nitride films of high entropy alloys fabricated based on the idea of multi-principal-element high entropy alloy have been found to possess high entropy effect, lattice distortion effect, and sluggish diffusion effect due to multielemental mixtures. This makes the new film system usually have a simple nanocrystalline or amorphous structures. Depending upon the composition and/or processing route, the nitride films of multi-principal-element high entropy alloy exhibit simple solid solution structure and excellent properties, and they have potential application in many areas. In this article, the development, microstructure, properties, proces-sing route and promising application of nitride films of high entropy alloys are summarized, and its directions of future research are also discussed.
|
Published: 10 June 2017
Online: 2018-05-04
|
|
|
|
1 Cantor B, Chang I T H, Knight P. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci Eng A, 2004, 375:213. 2 Yeh J W, Chen S K, Gan J Y, et al. Formation of simple crystal structure in solid-solution alloys with multi-principal metallic elements [J]. Metall Mater Trans A, 2004, 35:2533. 3 Yeh J W, Chen S K, Lin S J. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concept s and outcomes [J]. Adv Eng Mater, 2004, 6(5):299. 4 Ma D C, Yao M J, et al. Phase stability of non-equi-atomic CoCr-FeMnNi high entropy alloys [J]. Acta Mater, 2015, 98:288. 5 Zhang Y, Zhou Y J, et al. Solid-solution phase formation rules for multi-compoent alloys [J]. Adv Eng Mater, 2008, 10(6):534. 6 Li C, Li J C, Zhao M, et al. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys [J]. J Alloys Compd, 2009, 475:752. 7 Wang F J, Zhang Y. Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy [J]. Matr Sci Eng A, 2008, 496(1-2):214. 8 Dong Y, Gao X X, Lu Y P, et al. A multi-component AlCrFe2Ni2 alloy with excellent properties [J]. Mater Lett, 2016, 169:62. 9 Tsao L C, Chen C S, Chu C P. Age hardening reaction of the Al0.3-CrFe1.5MnNi0.5 high entropy alloy [J]. Mater Des, 2012, 36:854. 10 Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-entropy alloy design [J]. JOM, 2012, 64(7):839. 11 Zhang B, Gao M C, Zhang Y, et al. Senary refractory high entropy alloy MoNbTaTiVW [J]. Mater Sci Technol, 2015, 31(10):1207. 12 Lu Y P, Dong Y, et al. A promising new class of high-temperature alloys:Eutectic high-entropy alloys [J]. Sci Rep, 2014, 4:6200. 13 Gao M C, Zhang B, et al. Senary refractory high entropy alloy Hf-NbTaTiVZr [J]. Metall Mater Trans A, 2016, 47(7):3333. 14 Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf Coat Technol, 2004, 188-189:193. 15 Chen T K, Wong M S, Shun T T, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf Coat Technol, 2005, 200:1361. 16 Cheng C Y, Yeh J W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J]. Mater Lett, 2016, 185:456. 17 Chang Z C, Tsai D C, Chen E C. Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings [J]. Mater Sci Semicond Process, 2015, 39:30. 18 Tsau C H, Yang Y C, et al. The low electrical resistivity of the high-entropy alloy oxide thin films [J]. Procedia Eng, 2012, 36: 246. 19 Chang S Y, Lin S Y, Huang Y C. Microstructure and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings [J]. Thin Solid Films, 2011, 519(15):4865. 20 Tsai D C, Deng M J, Chang Z C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J]. J Alloys Compd, 2015, 647:179. 21 Dolique V, Thomann A L, Brault P, et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy [J]. Mater Chem Phys, 2009, 117:142. 22 Dolique V, Thomann A L, Brault P, et al. Thermal stability of AlCoCrCuFeNi high-entropy-alloy thin films studied by in-situ XRD analysis[J]. Surf Coat Technol, 2010, 204:1989. 23 Ren B, Liu Z X, Shi L, et al. Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering [J]. Appl Surf Sci, 2011, 257(16):7172. 24 Braic V, Balaceanu M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J Mechan Behav Biomed Mater, 2012, 10:197. 25 Sobol O V, Andreev A A, Gorban V F, et al. Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the va-cuum-arc method [J]. Techn Phys Lett, 2012, 38(7):616. 26 Grigoriev S N, Sobol O V, Beresnev V M, et al. Tribological cha-racteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method [J]. J Fric Wear, 2014, 35(5):359. 27 Meng F L, Baker I. Nitriding of a high entropy FeNiMnAlCr alloy [J]. J Alloys Compd, 2015, 645:376. 28 Chang Z C, Liang S C, Han S,et al. Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering [J]. Nucl Instrum Methods Phys Res Section B, 2010, 268(16):2504. 29 Liang S C, Chang Z C, Tsai D C, et al. Effects of substrate tempe-rature on the structure and mechanical properties of (TiVCrZrHf)N coatings [J]. Appl Surf Sci, 2011, 257(17):7709. 30 Chang H W, Huang P K, Yeh J W, et al. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings[J]. Surf Coat Technol, 2008, 202:3360. 31 Tsai D C, Chang Z C, Kuo B H, et al. Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering [J]. Appl Surf Sci, 2013, 282:789. 32 Ren B, Yan S Q, Zhao R F, et al. Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering [J]. Surf Coat Technol, 2013, 235:764. 33 Tsai D C, Chang Z C, Kuo B H, et al. Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering [J]. J Alloys Compd, 2014, 616:646. 34 Cheng K H, Lai C H, Lin S J, et al. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering [J]. Thin Solid Films, 2011, 519:3185. 35 Ren B, Shen Z G, Liu Z X. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering [J]. J Alloys Compd, 2013, 560:171. 36 Hsieh M H, Tsai M H, Shen W H, et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings [J]. Surf Coat Technol, 2013, 221:118. 37 Lin Y H. Hard nitride films of AlxCrNbTaTiZr alloy prepared by RF dual magnetron sputtering techniques [D]. Xinzhu:National Tsing Hua University, 2007(in Chinese). 林彦宏. 利用射频磁控溅镀法共镀AlxCrNbTaTiZr高熵合金氮化物薄膜及其性质探讨[D]. 新竹: 新竹清华大学, 2007. 38 Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating [J]. Surf Coat Technol, 2009, 203(13):1891. 39 Wang S W. A study on nitride of six, seven and eight elements high-entropy alloy prepared by RF magnetron sputtering [D]. Xinzhu:National Tsing Hua University, 2006(in Chinese). 王士维. 利用射频磁控溅镀法制备六、七、八元高熵合金氮化物薄膜及其性质探讨[D]. 新竹: 新竹清华大学, 2006. 40 Lai C H, Tsai M H, Lin S J, et al. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings [J]. Surf Coat Technol, 2007, 201:6993. 41 Lin C H, Duh J G, Yeh J W. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputtering [J]. Surf Coat Technol, 2007, 201:6304. 42 Hsueh H T, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx [J]. Surf Coat Technol, 2012, 206(19-20):4106. 43 Tsai D C, Huang Y L, Lin S R, et al. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering[J]. Appl Surf Sci, 2010, 257(4):1361. 44 Tsai D C, Chang Z C, Kuo B H, et al. Interfacial reactions and cha-racterization of (TiVCrZrHf)N thin films during thermal treatment [J]. Surf Coat Technol, 2014, 240:160. 45 Pogrebnjak A D, Yakushchenko I V, Bagdasaryan et al. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions [J]. Mater Chem Phys, 2014, 147:1079. 46 Nemchenko U S, Beresnev V M, et al. Wear resistance of the multicomponent coatings of the (Ti-Zr-Hf-V-Nb-Ta)N system at elevated temperature [J]. J Superhard Mater,2015, 37(5):322. 47 Feng X G, Tang G Z, Ma X X, et al. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation [J]. Nucl Instrum Methods Phys Res B, 2013, 301:29. 48 Lai C H, Cheng K H, Lin S J, et al. Mechanical and tribological pro-perties of multi-element (AlCrTaTiZr)N coatings [J]. Surf Coat Technol, 2008, 202(15): 3732. 49 Ye C F, et al. The effect of nitrogen on the corrosion behavior of high entropy thin films AlCrTaTiZr in 0.1 M sulfuric acid [J]. J Chin Corros Eng, 2009, 23(4):245 (in Chinese). 叶菁馥, 等. 氮含量对AlCrTaTiZr高熵薄膜在0.1 M硫酸溶液中腐蚀性质之影响 [J]. 防蚀工程, 2009, 23(4):245. 50 Lin C H, Duh J G. Corrosion behavior of (Ti-Al-Cr-Si-V)xVy coa-tings on mild steels derived from RF magnetron sputtering [J]. Surf Coat Technol, 2008, 203(5-7):558. 51 Tsai M H, Wang C W, Lai C H, et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization [J]. Appl Phys Lett, 2008, 92(5):052109-1. 52 Chang S Y, Chen M K. High thermal stability of AlCrTaTiZr nitride film as diffusion barrier for copper metallization [J]. Thin Solid Films, 2009, 517(17):4961. 53 Chang S Y, Chen D S. (AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900 ℃[J]. Mater Chem Phys, 2011, 125(1-2):5. 54 Huang P K, Yeh J W. Inhibition of grain coarsening up to 1 000 ℃ in (AlCrNbSiTiV)N superhard coatings [J]. Scr Mater, 2010, 62(2):105. 55 Firstov S A, Gorban V F, Danilenko N I. Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy[J]. Powder Metall Metal Ceram, 2014, 52(9-10):560. 56 Liu J Y, Wu L L. Research progress of high-speed cutting tool materials [J]. Heat Treatment Technol, 2012, 33(1):39 (in Chinese). 刘建永, 吴连连. 高速切削刀具材料的研究进展[J]. 热处理技术与装备,2012, 33(1):39. 57 张子钦,宋寰欣,林奕辰,等. 高熵合金氮化物薄膜被覆于超硬刀具表面制程之微结构与切削性研究[C]//2009绿色科技工程与应用研讨会.台中,2009:372. 58 Chang S Y, Li C E, Chiang S C, et al. 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J]. J Alloys Compd, 2012, 515:4. |
|
|
|