NEW MATERIAL AND TECHNOLOGY |
|
|
|
|
|
Development of Porphyrin-Peptides Supramolecular Assembly Systems |
HU Jianxin1,2,3, LI Fengqing1,2,3, ZHOU Xueqin1,2,3, LIU Dongzhi1,2,3, WANG Tianyang1,2,3, LI Wei1,2,3
|
1 School of Chemical Engineering, Tianjin University, Tianjin 300350; 2 Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350; 3 Tianjin Functional Fine Chemical Technology Engineering Center, Tianjin 300350 |
|
|
Abstract The supramolecular assembly systems of porphyrin-peptides have attracted considerable research interest in the field of supramolecular chemistry and biomaterials. Porphyrin-peptides assembly systems exhibit great potential for various applications such as biosensor, biomedicine, molecular recognition and optoelectronic devices due to the structural diversity, facile function and excellent biocompatibility. This paper reviews recent developments in the assembly of porphyrin-peptides from the perspectives of molecular design for the building blocks, assembly morphology control and assembly application. Moreover, it also provides an introduction about the main non-covalent interactions between porphyrin and peptides, including electrostatic interaction, hydrogen bond, coordination bond and hydrophilic/hydrophobic interaction,as well as the key issues and focus in this field for further research.
|
Published: 10 June 2017
Online: 2018-05-04
|
|
|
|
1 Zhang Tongyan, Xiong Haomiao, Yin Zhigang, et al. A new sort of chemical functional materials-cucurbiturils and theirself-assembled host-guest complexes with fluorescent compounds[J]. Mater Rev:Rev,2016,30(10):101(in Chinese).
张同艳,熊浩淼,尹志刚,等. 新型化学功能材料——瓜环与荧光化合物的主客体自组装研究进展[J]. 材料导报:综述篇,2016,30(10):101.
2 Wang Li, Li Wei, Liu Dongzhi, et al. Research progress of self-assembly methods to prepare porphyrin nanomaterials insolution[J]. Chem Ind Eng Prog,2013,32(9):2160(in Chinese).
王丽,李巍,刘东志,等. 溶液自组装法制备卟啉纳米材料研究进展[J]. 化工进展,2013,32(9):2160.
3 Wei Ran. Controllable self-assembly and drug delivery of small heptapeptide biomolecules[D].Shanghai:Donghua University, 2014(in Chinese).
魏然. 七肽小分子自组装调控及载药功能研究[D]. 上海:东华大学,2014.
4 许大全. 光合作用学[M]. 北京:科学出版社,2013:471.
5 Roszak A W, Howard T D, Southall J, et al. Crystal structure of the RC-LH1 core complex from rhodopseudomonas palustris[J]. Science,2003,302(5652):1969.
6 Amunts A, Toporik H, Borovikova A, et al. Structure determination and improved model of plant photosystem Ⅰ[J]. J Biol Chem,2010,285(5):3478.
7 Liu Z, Yan H, Wang K, et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution[J]. Nature,2004, 428(6980):287.
8 De la torre G, Bottari G, Sekita M, et al. A voyage into the synthesis and photophysics of homo-and heterobinuclear ensembles of phthalocyanines and porphyrins[J]. Chem Soc Rev,2013,42(20):8049.
9 Liu Z B, Xu Y F, Zhang X Y, et al. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties[J].J Phys Chem B,2009,113(29):9681.
10 Keinan S, Therien M J, Beratan D N, et al. Molecular design of porphyrin-based nonlinear optical materials[J].J Phys Chem A, 2008,112(47):12203.
11 Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluo-rescence microscopy[J]. Science,1990,248(4951):73.
12 Dy J T, Maeda R, Nagatsukay, et al. A photochromic porphyrin-perinaphthothioindigo conjugate and its two-photon absorption pro-perties[J]. Chem Commun,2007(48):5170.
13 Seo J W, Jang S Y, Kim D, et al. Octupolar trisporphyrin conjugates exhibiting strong two-photon absorption[J]. Tetrahedron, 2008,64(12):2733.
14 Wang T Y, Hu X X, Sun H Y, et al. Photophysical processes in a novel porphyrin-perylene metallosupramolecule with a long-lived triplet state[J]. Chem J Chinese Univ,2014,35(8):1753.
15 Ward M D, Raithby P R. Functional behaviour from controlled self-assembly: Challenges and prospects[J]. Chem Soc Rev,2013, 42(4):1619.
16 Guo P, Chen P, Liu M. Porphyrin assemblies via a surfactant-assisted method: From nanospheres to nanofibers with tunable length[J]. Langmuir,2012,28(44):15482.
17 Kano K, Minamizono H, Kitae T, et al. Self-aggregation of cationic porphyrins in water. Can π-π stacking interaction overcome electrostatic repulsive force[J].J Phys Chem A,1997,101(34):6118.
18 Chang K, Tang Y, Fang X, et al. Incorporation of porphyrin to π-conjugated backbone for polymer-dot sensitized photodynamic therapy[J]. Biomacromolecules,2016,17(6):2128.
19 Rao Y, Kim T, Park K H, et al. π-Extended “earring” porphyrins with multiple cavities and near-infrared absorption[J]. Angew Chem,2016,128(22):6548.
20 Yang Z, Liang G, Xu B. Supramolecular hydrogels based on β-amino acid derivatives[J]. Chem Commun,2006(7):738.
21 Toledano S, Williams R J, Jayawama V, et al. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis[J]. Adv Mater Chem Soc,2006,128:1070.
22 Yang S R, Ren S L, Zhang J Y, et al. Structure and self-assembly mechanism of self-assembled monolayers[J]. Chem J Chin Univ, 2001,22(3):470.
23 Zou Q, Liu K, Abbas M, et al. Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchi tecto-nics[J]. Adv Mater,2016,28(6):1031.
24 Han F F, Liang D, Wang H M, et al. Conductive properties of poly (3-octylthiophene)/multi-walled carbon nanotubes composites[J]. Acta Chim Sin,2009,67(7):611.
25 Kuciauskas D, Caputo G A. Self-assembly of peptide-porphyrin complexes leads to pH-dependent excitonic coupling[J].J Phys Chem B,2009,113(43):14439.
26 Fairman R, Åkerfeldt K S. Peptides as novel smart materials[J]. Curr Opin Struct Biol,2005,15(4):453.
27 Kovaric B C, Kokona B, Schwab A D, et al. Self-assembly of peptide porphyrin complexes:Toward the development of smart biomaterials[J]. J Am Chem Soc,2006,128(13):4166.
28 Monti D, Rossi M D E, Sorrenti A, et al. Supramolecular chirality in solvent-promoted aggregation of amphiphilic porphyrin derivatives: Kinetic studies and comparison between solution behavior and solid-state morphology by AFM topography[J]. Chem Eur J,2010,16(3):860.
29 Monti D, Stefanelli M, Raggio M, et al. Solid state deposition of chiral amphiphilic porphyrin derivatives on glass surface[J]. J Porphyrins Phthalocyanines,2011,15(12):1209.
30 Imai H, Munakata H, Uemori Y, et al. Chiral recognition of amino acids and dipeptides by a water-soluble zinc porphyrin[J]. Inorg Chem,2004,43(4):1211.
31 Li F, Wang T, Wang L, et al. Using glycine-induced nanoparticle to enhance photo-induced electron transfer efficiency in donoracceptor system[J]. Dyes Pigments,2017,140:116.
32 Charalambidis G, Kasotakis E, Lazarides T, et al. Self-assembly into spheres of a hybrid diphenylalanine-porphyrin: Increased fluorescence lifetime and conserved electronic properties[J]. Chem Eur J,2011,17(26):7213.
33 Karikis K, Georgilis E, Charalambidis G, et al. Corrole and porphyrin amino acid conjugates: Synthesis and physicochemical properties[J]. Chem Eur J,2016,22(32):11245.
34 Teixeira R, Andrade S M, Vaz serra V, et al. Reorganization of self-assembled dipeptide porphyrin J-aggregates in water-ethanol mixtures[J].J Phys Chem B,2012,116(8):2396.
35 Rusin O, Hub M, Kral V. Novel water-soluble porphyrin-based receptors for saccharide recognition[J]. Mater Sci Eng C,2001,18(1):135.
36 Hemández-eguía L P, Brea R J, Castedo L, et al. Regioisomeric control induced by DABCO coordination to rotatable self-assembled bis-and tetraporphyrin α, γ-cyclic octapeptide dimers[J]. Chem Eur J,2011,17(4):1220.
37 Wang Q, Chen Y, Ma P, et al. Morphology and chirality controlled self-assembled nanostructures of porphyrin-pentapeptide conjugate: Effect of the peptide secondary conformation[J]. J Mater Chem,2011,21(22):8057.
38 Biron E, Voyer N. Towards sequence selective DNA binding: Design, synthesis and DNA binding studies of novel bis-porphyrin peptidic nanostructures[J]. Org Biomol Chem,2008,6(14):2507.
39 Mezö G, Hérenyi L, Habdas J, et al. Syntheses and DNA binding of new cationic porphyrin-tetrapeptide conjugates[J]. Biophys Chem,2011,155(1):36.
40 Nuansing W, Georgilis E, De oliveira T V A G, et al. Electrospin- ning of tetraphenylporphyrin compounds into wires[J]. Particle Particle Syst Charact,2014,31(1):88.
41 Parayil S K, Lee J, Yoon M. Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor[J]. Photochem Photobiol Sci,2013,12(5):798.
42 Bender G M, Lehmann A, Zou H, et al. De novo design of a single-chain diphenylporphyrin metalloprotein[J]. J Am Chem Soc,2007,129(35):10732.
43 Tao K, Jacoby G, Burlaka L, et al. Design of controllable bio-inspired chiroptic self-assemblies[J]. Biomacromolecules,2016, 17(9):2937.
44 Carvalho I M M, Ogawa M Y. Self-organization of porphyrin-peptide units by metal-mediated peptide assembly[J]. J Brazilian Chem Soc,2010,21(7):1390.
45 Liu K, Kang Y, Ma G, et al. Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system[J]. Phys Chem Chem Phys,2016,18(25):16738.
46 Fry H C, Garcia J M, Medina M J, et al. Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays[J]. J Am Chem Soc,2012,134(36):14646.
47 Yu T, Lee O S, Schatz G C. Molecular dynamics simulations and electronic excited state properties of a self-assembled peptide amphiphile nanofiber with metalloporphyrin arrays[J].J Phys Chem A,2014,118(37):8553.
48 Kokona B, Kim A M, Roden R C, et al. Self assembly of coiled-coil peptide-porphyrin complexes[J]. Biomacromolecules,2009, 10(6):1454.
49 Pepe-mooney B J, Kokon B, Fairman R. Characterization of mesos- cale coiled-coil peptide-porphyrin complexes[J]. Biomacro molecules,2011,12(12):4196.
50 Kuciauskas D, Kiskis J, Caputo G A, et al. Exciton annihilation and energy transfer in self-assembled peptide-porphyrin complexes depends on peptide secondary structure[J].J Phys Chem B,2010,114(48):16029.
51 Wang Z, Medforth C J, Shelnutt J A. Porphyrin nanotubes by ionic self-assembly[J]. J Am Chem Soc,2004,126(49):15954.
52 Taggart J C, Welch E Z, Mulqueen M F, et al. Testing the role of charge and structure on the stability of peptide-porphyrin complexes[J]. Biomacromolecules,2014,15(12):4544.
53 Zaytsev D V, Xie F, Mukherjee M, et al. Nanometer to millimeter scale peptide-porphyrin materials[J]. Biomacromolecules,2010, 11(10):2602.
54 Zou Q, Zhang L, Yan X, et al. Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly[J]. Angew Chem In Ed,2014,53(9):2366.
55 Frischmann P D, MahaTA K, Wurthner F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies[J]. Chem Soc Rev,2013,42(4):1847.
56 Gilbert M, Albinsson B. Photoinduced charge and energy transfer in molecular wires[J]. Chem Soc Rev,2015,44(4):845.
57 Hasobe T. Porphyrin-based supramolecular nanoarchitectures for solar energy conversion[J].J Phys Chem Lett,2013,4(11):1771.
58 Jintoku H, Sagawa T, Miyamoto K, et al. Highly efficient and switchable electron-transfer system realised by peptide-assisted J-type assembly of porphyrin[J]. Chem Commun,2010,46(38):7208.
59 Hasobe T, Kamat P V, Troiani V, et al. Enhancement of light-ene-rgy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters[J].J Phys Chem B,2005,109(1):19.
60 Hasobe T, Imahori H, Kamat P V, et al. Quaternary self-organi- zation of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells[J]. J Am Chem Soc,2003,125(49):14962.
61 Uji H, Yatsunamiy, Kimury S. Anodic photocurrent generation by porphyrin-terminated helical peptide monolayers on gold[J].J Phys Chem C,2015,119(15):8054.
62 Kondo M, IidA K, Dewa T, et al. Photocurrent and electronic acti-vities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode[J]. Biomacromolecules,2012,13(2):432.
63 Kim J H, Lee M, Lee J S, et al. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis[J]. Angew Chem Int Ed,2012,51(2):517.
64 Dunetz J R, Sandstrom C, Young E R, et al. Self-assembling porphyrin-modified peptides[J]. Org Lett,2005,7(13):2559.
65 Sakamoto M, Ueno A, Mihara H. Multipeptide-metalloporphy rinassembly on a dendrimer template and photoinduced electron transfer based on the dendrimer structure[J]. Chem Eur J,2001,7(11):2449.
66 Orosz á, Mezö G, Herenyi L, et al. Binding of new cationic porphyrin-tetrapeptide conjugates to nucleoprotein complexes[J]. Biophys Chem,2013,177:14.
67 Bigey P, Sönnichsen S H, Meunier B, et al. DNA binding and clea-vage by a cationic manganese porphyrin-peptide nucleic acid conjugate[J]. Bioconjugate Chem,1997,8(3):267.
68 Charvátová J, Rusin O, Král V, et al. Novel porphyrin based receptors for saccharide recognition in water[J]. Sens Actuators B: Chem,2001,76(1):366.
69 Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J]. Chem Soc Rev,1995, 24(1):19.
70 Sibrian-vazquez M, Jensen T J, Vicente M G H. Synthesis, characterizationand metabolic stability of porphyrin-peptide conjugates bearing bifunctional signaling sequences[J]. J Med Chem,2008,51(10):2915.
71 Li H, Chan C F, Chan W L, et al. Monitoring and inhibition of Plk1: Amphiphilic porphyrin conjugated Plk1 specific peptides for its imaging and anti-tumor function[J]. Org Biomol Chem,2014,12(31):5876.
72 Wang J T W, Giuntini F, Eggleston I M, et al. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate[J]. J Controlled Release,2012,157(2):305.
73 Hirabayashi A, Shindo Y, Oka K, et al. Photodegradation of amyloid β and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives[J]. Chem Commun,2014,50(67):9543.
74 Li Y, Li X, Li Y, et al. Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: From multibilayer vesicles to hollow capsules[J]. Angew Chem Int Ed,2006,45(22):3639.
75 Henke P, Lang K, Kubat P, et al. Polystyrene nanofiber materials modified with an externally bound porphyrin photosensitizer[J]. ACS Appl Mater Interfaces,2013,5(9):3776.
76 Maisch T, Baier J, Franz B, et al. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria[J].PNAS,2007,104(17):7223.
77 Li Zhengyang, Tong Yue, Yao Wenbing. Evolution of anticancer mechanism of antimicrobial peptide[J]. Pharm Clinical Res,2010, 18(4):377(in Chinese).
李正洋,童玥,姚文兵. 抗菌肽的抗肿瘤研究进展[J]. 药学与临床研究,2010,18(4):377.
78 Moret F, Gobbo M, Reddi E. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells[J]. Photochem Photobiol Sci,2015,14(7):1238.
79 Bryden F, Savoie H, Rosca E V, et al. PET/PDT theranostics:Synthesis and biological evaluation of a peptide-targeted gallium porphyrin[J]. Dalton Trans,2015,44(11):4925.
80 Dosselli R, Ruiz-gonzalez R, Moret F, et al. Synthesis, spectro- scopic, and photophysical characterization and photosensitizing acti-vity toward prokaryotic and eukaryotic cells of porphyrin-magainin and-buforin conjugates[J]. J Med Chem,2014,57(4):1403.
81 Asayama S, Kawamura E, Nagaoka S, et al. Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidant[J]. Mol Pharm,2006,3(4):468.
82 Biesaga M, Orska J, Fiertek D, et al. Immobilized metal-ion affinity chromatography of peptides on metalloporphyrin stationary phases[J]. Fresenius′ J Anal Chem,1999,364(1-2):160.
83 Purrello R, Gurrieri S, Lauceri R. Porphyrin assemblies as chemical sensors[J]. Coordinat Chem Rev,1999,190:683.
84 Gurrieri S, Aliffi A, Bellacchio E, et al. Spectroscopic characteri-zation of porphyrin supramolecular aggregates on poly-lysine and their application to quantitative DNA determination[J]. Inorg Chim Acta,1999,286(2):121.
85 Long L, Jin J Y, Zhang Y, et al. Interactions between protein and porphyrin-containing cyclodextrin supramolecular system: A fluorescent sensing approach for albumin[J]. Analyst,2008,133(9):1201.
86 Chaloin L, Bigey P, Loup C, et al. Improvement of porphyrin cel- lular delivery and activity by conjugation to a carrier peptide[J]. Bioconjugate Chem,2001,12(5):691.
87 Zhang L, Yuan J, Liu M. Supramolecular chirality of achiral TPPS complexed with chiral molecular films[J].J Phys Chem B, 2003,107(46):12768.
88 Mammana A, D′urso A, Lauceri R, et al. Switching off and on the supramolecular chiral memory in porphyrin assemblies[J]. J Am Chem Soc,2007,129(26):8062. |
|
|
|