REVIEW PAPER |
|
|
|
|
|
Applying Light Trapping Structure to GaAs Thin Film Solar Cells: A State-of-the-Art Review |
LIU Yusheng1, LIU Wen1, ZHANG Shuyuan1, YANG Fuhua1,2, WANG Xiaodong1,2
|
1 Engineering Research Center of Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; 2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 101408 |
|
|
Abstract Owing to its unique optical properties, light trapping structure plays a more and more important role in the photovoltaic devices. At present, the application of light trapping structure in silicon-based solar cells is quite popular, but its application in GaAs thin film solar cells is little reported. In this article, the principle, research status of light trapping structure and its applications in GaAs thin film solar cells are introduced in detail. Three kinds of light trapping structures for GaAs thin film solar cells are summarized,including light trapping structure on the front surface (such as metal nanoparticle, nanowire, nanocone, etc.),light trapping structure on the back surface (such as back reflection layer), and hybrid light trapping structure. It shows that the application of light trapping structure can further improve photoelectric conversion efficiency of the GaAs thin film solar cells, and can also achieve the goal of reducing the production cost of the solar cells.
|
Published: 10 June 2017
Online: 2018-05-04
|
|
|
|
1 Zhao Yuwen, Wu Dacheng, Wang Sicheng, et al. China PV industry development report[R]. Sol Energy,2008(6):6(in Chinese). 赵玉文,吴达成,王斯成,等.中国光伏产业发展研究报告[R].太阳能,2008(6):6 2 Lee K, Zimmerman J D, et al. Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics[J]. Adv Funct Mater, 2014, 24 (27):4284 3 Kayes B M, Nie H, Twist R, et al. 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination[C]∥IEEE Photovoltaic Specialists Conference.Seattle, USA, 2011. 4 Yablonovitch E. Intensity enhancement in textured optical sheets for solar cells[J]. IEEE Trans Electron Devices, 1982, 29(2):300. 5 Stuart H, Hall D. Thermodynamic limit to light trapping in thin planar structures[J]. J Opt Soc Am A, 1997, 14(11):3001. 6 Yu Z, Raman A, Fan S. Fundamental limit of light trapping in gra-ting structures[J]. Opt Express,2010,18 (S3):A366. 7 Brongersma M L, Cui Y, Fan S. Light management for photovol-taics using high-index nanostructures[J].Nat Mater, 2014, 13(5):451. 8 Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Phys Rev B:Condensed Matter, 2002,65(23):121. 9 Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells[J]. PNAS,2010,107(41):17491. 10 Green M A. Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices[J]. Prog Photovolt Res Appl, 2011, 19(4):473. 11 Callahan D M, Munday J N, Atwater H A. Solar cell light trapping beyond the ray optic limit[J]. Nano Lett,2012, 12(1):214. 12 Miller O D, Yablonovitch E, Kurtz S R. Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit[J]. IEEE J Photovolt,2012, 2(3):303. 13 Niv A, Gharghi M, Gladden C, et al. Near-field electromagnetic theory for thin solar cells[J]. Phys Rev Lett,2012,109:138701. 14 Allen Taflove, Susan C, Hagness. Computational electrodynamics:The finite-difference time-domain method[M]. 2nd edition.Artech House, Inc,2000. 15 Grandidier J, Callahan D M, Munday J N, et al. Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres[J]. IEEE J Photovolt,2012,2(2):123. 16 Wen L, Zhao Z, Li X, et al. Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells[J]. Appl Phys Lett,2011,99(14):143116. 17 Li Y,Yan X,Wu Y,et al. Plasmon-enhanced light absorption in GaAs nanowire array solar cells[J]. Nanosc Res Lett, 2015,10(1):1. 18 Jian-Ming Jin. The finite element method in electromagnetics[M].2nd Edition. John Wiley&Sons, Inc,2002. 19 Hong L, Rusli, Wang X, et al. Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement[J]. J Appl Phys,2012,112(5):054326-5. 20 Hong L, Yu H, Wang X, et al. Surface nanostructure optimization for GaAs solar cell application[J]. Jpn J Appl Phys,2012,51(51):1472. 21 Zhang X, Sun X, Jiang J D. Absorption enhancement using nano-needle array for solar cell[J]. Appl Phys Lett,2013, 103(21):211110. 22 Chen Jianjun. Structures design and properties study of metamate-rials[D]. Bejing:Institute of Semiconductors,Chinese Academy of Sciences,2009. 陈建军. 电磁特异介质的结构设计与性质研究[D].北京:中国科学院半导体研究所,2009. 23 Liu S, Ding D, Johnson S R, et al. Approaching single-junction theo-retical limit using ultra-thin GaAs solar cells with optimal optical designs[C]∥IEEE Photovoltaic Specialists Conference.Austin,TX,USA,2012. 24 Zhou K, Li X, Liu S, et al. Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells[J]. Nanotechnology,2014,25(41):5401. 25 Tsui K H, Lin Q, Chou H, et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics[J]. Adv Mater,2014,26(18): 2805. 26 Chen Yankun, Han Weihua,Wang Xiaodong, et al. Surface nanostructures of silicon solar cells and their preparations[J]. Micronanoelectron Technol,2012,49(6):388(in Chinese). 陈燕坤, 韩伟华, 王晓东,等. 硅基太阳电池的表面纳米 织构及制备[J]. 微纳电子技术,2012,49(6):388. 27 Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells[J]. Appl Phys Lett,2008,93(12):121904. 28 Liu W, Wang X, Li Y, et al. Surface plasmon enhanced GaAs thin film solar cells[J]. Sol Energy Mater Sol Cells, 2011,95(2):693. 29 Davies D G, Whittaker D M, Wilson L R. Hybrid gold nanoantenna array—Dielectric thin film anti-reflection coatings on GaAs[J]. Solid State Commun,2012,152(24):2156. 30 Dabirian A, Taghavinia N. Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles[J]. ACS Appl Mater Interfaces,2015,7(27):14926. 31 Hylton N P, Li X, Giannini V, et al. Al nanoparticle arrays for broadband absorption enhancements in GaAs devices[C]∥IEEE Photovoltaic Specialists Conference.FL,2013. 32 Hylton N P, Li X, Giannini V, et al. Loss mitigation in plasmonic solar cells: Aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes[J]. Sci Rep,2013,3(10):2874. 33 Manakov S M, Dikhanbaev K K, Aueylkhankyzy M, et al. Light trapping enhancement in gallium arsenide solar cells[J]. J Nanoelectron Optoelectron,2014,9(4):511. 34 Soci C, Zhang A, Bao X Y, et al. Nanowire photodetectors [J]. J Nanosci Nanotechnol,2010,10(3):1430. 35 Han N, Yang Z X, Wang F, et al. High-performance GaAs nanowire solar cells for flexible and transparent photovoltaics[J]. ACS Appl Mater Interfaces,2015, 7(36):20454. 36 Aberg I, Vescovi G, Asoli D, et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun[J]. IEEE J Photovolt,2015,6(1):1. 37 Lin Y R, Lai K Y, Wanga H P, et al. Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties [J]. Nanoscale,2010,2(10):2765. 38 Kang Y,Chen Y,Huo Y, et al. Ultra-thin film nanostructured gal-lium arsenide solar cells[J]. Proc SPIE, 2014,9277:927718. 39 Vandamme N, Chen H L, Gaucher A, et al. Ultrathin GaAs solar cells with a silver back mirror[J]. IEEE J Photovolt, 2015,5(2):565. 40 Yang W, Allen C, Li J J, et al. Ultra-thin GaAs single-junction solar cells integrated with lattice-matched ZnSe as a reflective back scattering layer[C]∥IEEE Photovoltaic Specialists Conference.Austin, TX,USA,2012. 41 Yang W, Becker J, Kuo Y S, et al. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer[J]. J Appl Phys,2014,115(20):3105. 42 Yang W, Becker J, Kuo Y S, et al. Ultra-thin GaAs single-junction solar cells integrated with an AlInP layer for reflective back scatte-ring[C]∥ Photovoltaic Specialists Conference.Tampa,FL,2013. 43 Inoue T, Watanabe K, Fujii H, et al. Enhanced light trapping in multiple quantum wells by thin-film structure and backside grooves with dielectric interface[J]. IEEE J Appl Phys,2015,5(2):1. 44 Liang D, Kang Y, Huo Y, et al. GaAs thin film nanostructure arrays for Ⅲ-Ⅴ solar cell applications[C]∥Photonic and Phononic Properties of Engineered Nanostructures Ⅱ.Stanforduniv,USA,2012. 45 Leung S F, Zhang Q, Xiu F, et al. Light management with nanostructures foroptoelectronic devices[J]. J Phys Chem Lett,2014,5(8):1479. 46 Lee S M, Kwong A,Jung D, et al. High performance ultrathin gaas solar cells enabled with heterogeneously integrated dielectric periodic nanostructures[J]. ACS Nano, 2015,9(10):10356. |
|
|
|