COMPUTATIONAL SIMULATION |
|
|
|
|
|
Finite Element Analysis of Longitudinal Tensile Deformation Behavior of Coronary Stents |
SHEN Xiang, XIE Zhongmin, DENG Yongquan, JI Song
|
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 |
|
|
Abstract Longitudinal stent strength was one of the most important mechanical properties of coronary stents, and the longitudinal deformation behavior of stent resulted from the lack of longitudinal strength had become one of the most serious complications of percutaneous coronary stent implantation. This paper established the model of the longitudinal tensile stent to systematically analysis the effects of stent expansion diameter, force load position, connector shape and circumferential connector number between struts on longitudinal tensile deformation behavior of the stent. Results showed that connector number played the most significant role on longitudinal tensile deformation, and increasing the connector number could substantially improve the longitudinal resistance. The connector shape played the second significant role on longitudinal tensile deformation, and the longitudinal resistance could be proved 50% when the longitudinal displacement of the stent was 0.5 mm and the connector shape was transformed from the S-stent to L-stent. For the same connector shape, increasing expansion diameter could likely occur the longitudinal deformation. Simultaneously, the results demonstrated the end of proximal and distal of stent was more longitudinal deformation than the middle of stent. Reasonably changing stent design parameters could effectively improve longitudinal tensile deformation. Conclusions obtained from this paper can help designers to optimize the stent design to reduce the longitudinal deformation.
|
Published:
Online: 2018-05-08
|
|
|
|
1 Donahue M, Briguori C, Donahue M, et al. Coronary artery sten-ting in elderly patients: Where are we now[J]. Interventional Car-diology,2015,6(6):295. 2 Foin N, Mario C D, Francis D P, et al. Stent flexibility versus concertina effect: Mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab[J]. Int J Car-diology,2013,164(3):259. 3 Arnous S, Shakhshir N, Wiper A, et al. Incidence and mechanisms of longitudinal stent deformation associated with biomatrix, resolute, element, and xience stents: Angiographic and case-by-case review of 1,800 PCIs[J]. Catheterization Cardiovascular Interventions,2015,86(6):1002. 4 Guler A, Guler Y, Acar E, et al. Clinical, angiographic and procedural characteristics of longitudinal stent deformation[J]. Int J Cardiovascular Imaging,2016,32(8):1163. 5 Leong A M, Ong P J L, Ho H H, et al. Distal longitudinal defor-mation of a Synergy stent by jailed rotawire guidewire[J]. Herz,2017,42(2):209. 6 Belardi J A, Albertal M. When a stent gets shorty[J]. Catheterization Cardiovascular Interventions,2015,86(6):1012. 7 Rigattieri S, Sciahbasi A, Loschiavo P. The clinical spectrum of longitudinal deformation of coronary stents: From a mere angiographic finding to a severe complication[J]. J Invasive Cardiology,2013,25(5):101. 8 Williams P D, Mamas M A, Morgan K P, et al. Longitudinal stent deformation: A retrospective analysis of frequency and mechanisms[J]. Eurointervention,2012,8(2):267. 9 Cook S, Ladich E, Nakazawa G, et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis[J]. Circulation,2009,120(5):391. 10 Mortier P, De B M. Stent design back in the picture: An engineering perspective on longitudinal stent compression[J]. Eurointervention,2011,7(7):773. 11 Prabhu S, Schikorr T, Mahmoud T, et al. Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents[J]. Eurointervention,2012,8(2):275. 12 Zhang Y H, Li H X, Wang X C. Fatigue life analysis for cardiovascular stent[J]. J Harbin Institute of Technology,2011(S1):86(in Chinese). 张艺浩, 李红霞, 王希诚. 血管支架疲劳寿命分析[J]. 哈尔滨工业大学学报,2011(S1):86. 13 Li N, Zhang H W. Numerical research on longitudinal flexibil ity of a coronary stent[J]. Chin J Comput Mech,2011,28(3):309(in Chinese). 李宁, 张洪武. 冠脉支架纵向柔顺性数值模拟[J]. 计算力学学报,2011,28(3):309. 14 Liu Q, Lei L P, Zeng P, et al. Numerical and experimental study of radial support capacity of intravascular stent[J]. Chin J Medical Instrumentation,2010,34(3):175(in Chinese). 刘倩, 雷丽萍, 曾攀,等. 血管支架径向支撑能力的数值模拟和实验研究[J]. 中国医疗器械杂志,2010,34(3):175. 15 Xu H J, Wang C E, Que Z W, et al. Preparation and radial compression performance of PDO intravascular stent[J]. J Donghua University:Nat Sci,2014,40(4):418(in Chinese). 许慧珺, 王聪儿, 阙志文,等. PDO血管内支架的制备及其径向压缩性能[J]. 东华大学学报:自然科学版,2014,40(4):418. 16 Ormiston J A, Webber B, Webster M W I. Stent longitudinal integrity: Bench insights into a clinical problem[J]. JACC Cardiovascular Interventions,2011,4(12):1310. 17 Ren Q S, Ren X L, Peng K, et al. Simulation study on expansion process of vascular stent in realistic stenosis model[J]. J Medical Biomechanics,2015,30(6):488(in Chinese). 任庆帅,任希力,彭坤,等. 血管支架在真实狭窄血管模型中扩张过程的模拟研究[J]. 医用生物力学,2015,30(6):488. 18 Chen Y, Xiong Y, Jiang W T, et al. Numerical simulation on the effects of drug-eluting stents with different bending angles on hemodynamics and drug distribution[J]. Medical Biological Eng,2016,54(12):1859. 19 Li H X, Wang X C. Stent optimization based on different expansion models[J]. J Harbin Institute of Technology,2011(S1):267(in Chinese). 李红霞, 王希诚. 基于不同扩张模拟方式的支架优化设计[J]. 哈尔滨工业大学学报,2011(S1):267. 20 Qiao A, Zhang Z. Numerical simulation of vertebral artery stenosis treated with different stents[J]. J Biomechanical Eng,2014,136(4):1274. 21 Jiang X D, Teng X Y, Shi D Y, et al. The nonlinear finite element analysis of curved vascular lesion mechanism by coronary stent intervention[J].J Funct Mater,2015(3):3050(in Chinese). 江旭东, 滕晓艳, 史冬岩,等. 冠脉支架对弯曲血管损伤机理的非线性有限元分析[J]. 功能材料,2015(3):3050. 22 Chen H M, Liu Z, Han Y D, et al. Effects of stent parameters on vascular wall shear stress[J]. J Medical Biomechanics,2016,31(1):8(in Chinese). 陈鹤鸣, 柳臻, 韩宜丹,等. 支架参数对血管壁面剪切应力的影响[J]. 医用生物力学,2016,31(1):8. 23 Li H X, Qiu T S, Zhu B, et al. Design optimization of coronary stent based on finite element models[J]. Sci World J,2013,2013(5):630243. 24 Feng H Q, Sun L L, Han Q S, et al. The simulation and research with deformation behavior and mechanical properties of stents in narrow blood vessel[J]. J Funct Mater,2015,46(22):22085(in Chinese). 冯海全,孙丽丽, 韩青松,等.狭窄血管内支架变形行为及力学性能模拟研究[J]. 功能材料,2015,46(22):22085. 25 Wang J L, Chen H Y, Chen X, et al. Finite element simulation of coronary stent expansion process[J]. Mater Rev: Res,2009,23(7):70(in Chinese). 王佳玲,陈华予,陈曦,等. 冠脉支架膨胀过程的有限元模拟[J]. 材料导报:研究篇,2009,23(7):70. 26 Wang W Q, Wang L, Yang D Z, et al. Design optimization of endovascular stent by finite element method[J]. J Biomedical Eng,2008,25(2):372(in Chinese). 王伟强, 王丽, 杨大智,等. 血管支架有限元优化设计[J]. 生物医学工程学杂志,2008,25(2):372. 27 Hsiao H M, Yeh C T, Wang C, et al. Effects of stent design on new clinical issue of longitudinal stent compression in interventional car-diology[J]. Biomedical Microdevices,2014,16(4):599. 28 Ragkousis G E, Curzen N, Bressloff N W. Simulation of longitudinal stent deformation in a patient-specific coronary artery[J]. Medical Eng Phys,2014,36(4):467. |
|
|
|