REVIEW PAPER |
|
|
|
|
|
Some Research Developments on Mechanical Property of Nanoporous Metals |
GUO Linkai, WANG Lei, ZHANG Qing
|
College of Mechanics and Materials, Hohai University, Nanjing 211100 |
|
|
Abstract In recent years, due to their superior chemical, mechanical and surface Raman scattering property, nanoporous metals, which are new types of functional materials with ultrahigh specific surface area and bi-continuous network at nano-scale, have been widely used in many fields such as catalysis, sensing, new energy and bio-medical engineering. In this paper, detailed review is carried out on some research works related to preparation, mechanical property and scale-sensitive performance of nanoporous metals, with an emphasis on scaling law, failure mechanism, surface effects and dealloying process, and some future directions are also prospected.
|
Published: 10 January 2017
Online: 2018-05-02
|
|
|
|
1 Ding Y, Kim Y J, Erlebacher J. Nanoporous gold leaf: “Ancient Technology”/advanced material[J]. Adv Mater,2004,16(21):1897. 2 Dixon M C, Daniel T A, Hieda M, et al. Preparation, structure, and optical properties of nanoporous gold thin films [J]. Langmuir, 2007,23(5):2414. 3 Erlrbacher J, Seshadri R. Hard materials with tunable porosity[J]. MRE Bull,2009,34(8):561. 4 Vaseashta A, Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors[J]. J Optoelectronics Adv Mater,2016,6(3-4):312. 5 Wittstock A, Biener J, Bumer M. Nanoporous gold: A new material for catalytic and sensor applications[J]. Phys Chem Chem Phys,2010,12(40):12919. 6 Kramer D, Vidwanath R N, Weissmuller J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers[J]. Nano Lett,2004.4(5):793. 7 Biener J, Wittstock A, Zepeda-Ruiz L A, et al. Surface-chemistry-driven actuation in nanoporous gold[J]. Nature Mater,2009,8(1):47. 8 Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electronchemical actuators[J]. Nano Lett,2010,10(1):187. 9 Chen X, Si C, Wang Y, et al. Multicomponent platinum-free nano-porous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction[J]. Nano Res,2016,9(6):1. 10 Qiao Y, Li C M. Nanostructured catalysts in fuel cells[J]. J Mater Chem,2011,21(12):4027. 11 Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling coupling of methanol at low temperature[J]. Science,2010,327(5963):319. 12 Xu C, Su J, Xu X, et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc,2007,129(1):42. 13 Kucheyev S O, Hayes J R, Biener J, et al. Surface-enhanced Raman scattering on nanoporous Au[J]. Appl Phys Lett,2006,89(5):053102. 14 Qian L H, Yan X Q, Fujita T, et al. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements[J]. Appl Phys Lett,2007,90(15):153120. 15 Schade L, Franzka S, Biener M, et al. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold[J]. Appl Surf Sci,2016,374:19. 16 Volkmar Z, Birte J, Christian S, et al. Gold catalysts: Nanoporous gold foams[J]. Angew Chem,2006,45(48):8241. 17 Fujita T, Okada H, Koyama K, et al. Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields[J]. Phys Rev Lett,2008,101(16):3958. 18 Zhang L, Chang H, Hirata A, et al. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions[J]. Acs Nano,2013,7(5):4595. 19 Sieradzki K, Rinaldi A, Friesen C, et al. Length scales in crystal plasticity[J]. Acta Mater,2006,54(17):4533. 20 Liu Z, Searson P C. Single nanoporous gold nanowire sensors[J]. J Phys Chem B,2006,110(9):4318. 21 Shin T Y, Yoo S H, Park S. Gold nanotubes with a nanoporous wall: Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation[J]. Chem Mater,2012,20(17):5682. 22 Cheng F, Bandaru N M, Ellis A V, et al. Electrochemical fabrication of nanoporous gold[J]. J Mater Chem,2012,22(7):3952. 23 Arzt E, Dehm G, Gumbsch P, et al. Interface controlled plasticity in metals: Dispersion hardening and thin film deformation[J]. Prog Mater Sci,2001,46(3-4):283. 24 Parida S, Kramer D, Volkert C A, et al. Volume change during the formation of nanoporous gold by dealloying[J]. Phys Rev Lett,2006,97(3):035504. 25 Biener J, Hodge A M, Hamza A V. Microscopic failure behavior of nanoporous gold[J]. Appl Phys Lett,2005,87(12):121908. 26 Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical dehavior of nanoporous Au[J]. Nano Lett,2006,6(10):2379. 27 Parthasarathi A, Polan N W. Stress corrosion of Cu-Zn and Cu-Zn-Ni: The role of delloying[J]. Metall Mater Trans A,1982,13(11):2027. 28 Pickering H W, Swann P R. Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking[J]. Corrosion,1963,19(11):373. 29 Forty A J. Corrosion micromorphology of noble metal alloys and depletion gilding[J]. Nature,1979,282(5739):597. 30 Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in delloying[J]. Nature,2001,410(6827):450. 31 Swann P R. Mechanism of corrosion tunneling with special reference to Cu3Au[J]. Corrosion,1969,25(4):147. 32 Sieradzki K, Newman R C. Micro- and nano-porous merallic structures: USA, 338260-7[P].1990. 33 Opprnheim I C, Trevor D J, Chidsey C E, et al. In situ scanning tunneling microscopy of corrosion of silver-gold alloys[J]. Science,1991,254(5032):687. 34 Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution[J]. J Am Chem Soc,2003,125(26):7772. 35 Ding Y, Chen M, Erlebacher J. Metallic mesoporous nanocompo-sites for electrocatalysis[J]. J Am Chem Soc,2004,126(22):6876. 36 Jin H J, Weissmüller J. A material with electrically tunable strength and flow stress[J]. Science,2011,332(6034):1179. 37 Lee D, Wei X, Chen X, et al. Microfabrication and mechanical pro-perties of nanoporous gold at the nanoscale[J]. Scripta Mater,2007,56(5):437. 38 Sun Y, Kucera K P, Burger S A, et al. Microstructure, stability and thermomenchanical behavior of crack-free thin films of nanoporous gold[J]. Scripta Mater,2008,58(11):1018. 39 Zhu J, Seker E, Bart-Smith H, et al. Mitigation of tensile failure in released nanoporous metal micro structures via thermal treatment[J]. Appl Phys Lett,2006,89(13):4773. 40 Seker E, Gaskins J T, Bart-Smith H, et al. The effects of annealing prior to dealloying on the mechanical properties of nanoporous gold microbeams[J]. Acta Mater,2008,56(3):324. 41 Seker E, Gaskins J T, Bart-Smith H, et al. The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures[J]. Acta Mater,2007,55(14):4593. 42 Haque M A, Saif M T. Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study[J]. Proceedings of the National Academy of Sciences,2004,101(17):6335. 43 Feng X Q, Li J Y, Yu S W. A simple method for calculating interaction of numerous microcracks andits applications[J]. Int J Solids Structures,2003,40(2):447. 44 Hakamada M, Mabuchi M. Mechanical strength of nanoporous gold fabricated by dealloying[J]. Scripta Mater,2007,56(11):1003. 45 Hieda M, Garcia R, Dixon M, et al. Ultrasensitive quartz crystal microbalance with porous gold electrodes[J]. Appl Phys Lett,2004,84(4):628. 46 Lührs L, Soyarslan C, Markmann J, et al. Elastic and plastic Poisson′s ratios of nanoporous gold[J]. Scripta Mater,2016,110:65. 47 Biener J, Hamza A V, Hodge A M. Deformation behavior of nano-porous metals[C]// Micro and Nano Mechanical Testing of Materials and Devices. USA:Springer Science+Business Media,2008:11. 48 Hodge A M, Doucette R T, Biener M M, et al. Ag effects on the elastic modulus value of nanoporous Au foams[J]. J Mater Res,2009,24(4):1600. 49 Biener J, Hodge A M, Hamza A V, et al. Nanoporous Au: A high yield strength material[J]. J Appl Phys,2005,97(2):024301. 50 Yuan F, Wu X. Scaling laws and deformation mechanisms of nano-porous copper under adiabatic uniaxial strain compression[J]. Aip Adv,2014,4(12):312. 51 Ng B N D, Stukowski A, Mameka N, et al. Anomalous compliance and early yielding of nanoporous gold[J]. Acta Mater,2015,93:144. 52 Lee D, Wei X, Zhao M, et al. Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold[J]. Modelling Simulation Mater Sci Eng,2006,15(1):181. 53 Gupta G, Thorp J C, Mara N A, et al. Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1-x[J]. J Appl Phys,2012,112(9):094320. 54 Li R, Sieradzki K. Ductile-brittle transition in random Au[J]. Phys Rev Lett,1992,68(8):1168. 55 Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Mater,2007,55(4):1343. 56 Farkas D, Caro A, Bringa E, et al. Mechanical response of nanoporous gold[J]. Acta Mater,2013,61(9):3249. 57 Jin H J, Kumanaeva L, Schmauch J, et al. Deforming nanoporous metal: Role of lattice coherency[J]. Acta Mater,2009,57(9):2665. 58 Briot N J, Kennerknecht T. Mechanical properties of bulk single crystalline nanoporous gold investigated by millimeter-scale tension and compression testing[J]. Philosophical Magazine,2014,94(8):847. 59 Liu R, Antoniou A. A relationship between the geometrical structure of a nanoporous metal foam and its modulus[J]. Acta Mater,2013,61(7):2390. 60 Gibson L J, Ashby M F. Cellular solid: Structure and properties[M]. England: Cambridge University Press, 1999:27. 61 Wu T Y, Wang X, Huang J C, et al. Characterization and functional applications of nanoporous Ag foams prepared by chemical dealloying[J]. Metall Mater Trans B,2015,46(5):1. 62 Volkert C A, Lilleodden E T, et al. Approaching the theoretical in nanoporous Au[J]. Appl Phys Lett,2006,89(6):061920. 63 Weissmüller J, Newman R C, Jin H J. Nanoporous metals by alloy corrosion: Formation and mechanical properties[J]. MRS Bull,2009,34(8):577. 64 Huber N, Viswanath R N, et al. Scaling laws of nano-porous metals under uniaxial compression[J]. Acta Mater,2014,67(4):252. 65 Kahng B, Batrouni G G, Redner S, et al. Electrical breakdown in a fuse network with random, continuously distributed breaking strengths[J]. Phys Rev B Condensed Matter,1988,37(13):7625. 66 Mccullough K Y G, Fleck N A, Ashby M F. Uniaxial stress-strain behavior of aluminum alloy foams[J]. Acta Mater,1999,47(8):2323. 67 Amsterdam E, Onck P R, et al. Fracture and microstructure of open cell aluminum foam[J]. J Mater Sci,2005,40(22):5813. 68 Weissmüller J, Viswanath R N, Kramer D, et al. Charge-induced reversible strain in a metal[J]. Science, 2003, 300(5617):312. 69 Viswanath R N, Kramer D, Weissmüller J. Adsorbate effects on the surface stress-charge response of platinum electrodes[J]. Electrochimica Acta,2008,53(6):2757. 70 Cheng C, Ngan A H W. Charge-induced reversible bending in anodic porous alumina-aluminum composites[J]. Appl Phys Lett,2013,102(21):213119. 71 Ebron V H, Yang Z W, Seyer D J, et al. Fuel-powered artificial muscles[J]. Science,2006,311(5767):1580. 72 Zhang J, Bai Q, Zhang Z. Dealloying-driven nanoporous palladium with superior electrochemical actuation performance[J]. Nanoscale,2016,8(13):7287. 73 Bai Q, Si C, Zhang J, et al. Sign inversion of surface stress-charge response of bulk nanoporous nickel actuators with different surface states[J]. Phys Chem Chem Phys,2016,18(29):19798. |
|
|
|