REVIEW PAPER |
|
|
|
|
|
A Methodological Review on Green Electrochemical Synthesis of Metal-Organic Framework Materials |
WEI Jinzhi, WANG Xueliang, SUN Xiaojun, ZHANG Fengming
|
College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150080 |
|
|
Abstract Metal-organic frameworks (MOFs) are a kind of inorganic-organic hybrid complexes assembled by the coordinate bonding of metal ions and organic ligands, and have found wide application in gas separation and storage, adsorption, catalysis, drug delivery and fluorescence detection, etc. Amongst the rich variety of methods to synthesize MOFs, the green electrochemical synthesis has become a hot topic owing to its low energy consumption, mild reaction condition and short reaction time, nevertheless it still faces some key issues. This paper renders a retrospection over the research upon green electrochemical synthesis of MOFs during the past decade, along with a summary of the relevant prevailing methods, including anodic synthesis, cathodic synthesis, indirect synthesis and galvanic displacement. It also contains a prospective outlook for the future research.
|
Published: 10 May 2018
Online: 2018-07-06
|
|
|
|
1 Férey G. Hybrid porous solids: Past, present, future[J].Chemical Society Reviews,2008,37(1):191. 2 Li H, Eddaoudi M, T L G, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC=1,4-Benzenedicarboxylate)[J].Journal of the American Chemical Society,1998,120(33):8571. 3 Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J].Chemical Reviews,2012,112(2):724. 4 Bae Y S, Snurr R Q. Development and evaluation of porous mate-rials for carbon dioxide separation and capture[J].Angewandte Chemie International Edition,2011,50(49):11586. 5 Assche T R C V, Duerinck T, Sevillano J J G, et al. High adsorption capacities and two-step adsorption of polar adsorbates on copper-benzene-1,3,5-tricarboxylate metal-organic framework[J].Journal of Physical Chemistry C,2013,117(117):18100. 6 Sachse A, Ameloot R, Coq B, et al. In situ synthesis of Cu-BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis[J].Chemical Communications,2012,48(39):4749. 7 Murray L J, Dinc M, Long J R. Hydrogen storage in metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1294. 8 Lv F, Xu L, Zhang Y, et al. Layered double hydroxide assemblies with controllable drug loading capacity and release behavior as well as stabilized layer-by-layer polymer multilayers[J].Applied Materials & Interfaces,2015,7(34):19104. 9 Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks[J].Journal of the American Chemical Society,1990,112(4):1199. 10 Kitagawa S, Matsuyama S, Munakata M, et al. Synthesis and crystal structures of novel one-dimensional polymers, [{M(bpen)X∞][M=CuI, X=PF6 ; M=AgI, X=ClO-4; bpen=trans-1,2-bis(2-pyridyl)ethylene] and [{Cu(bpen)(CO)(CH3CN)(PF6)∞][J].Journal of the Chemical Society Dalton Transactions,1991,11(11):2869. 11 Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J].Journal of the American Chemical Society,1995,117(41):10401. 12 Gardner G B, Venkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network[J].Nature,1995, 374(6525):792. 13 Riou D, Férey G. Hybrid open frameworks (MILn). Part 3 crystal structures of the HT and LT forms of MIL7: A new vanadium propylenediphosphonate with an open-framework. Influence of the synthesis temperature on the oxidation state of vanadium within the same structural type[J].Journal of Materials Chemistry,1998,8(12):2733. 14 Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks[J].Chemical Reviews,2017,112(2):673. 15 Ying Lulu. “Leaves” car into the Expo[J].Today Technology,2010(8):53(in Chinese). 应璐珺.“叶子”汽车驶入世博[J].今日科技,2010(8):53. 16 Sadeghi H. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111)[J].Journal of the American Chemical Society,2005,127(40):13744. 17 Bux H, Liang F, Li Y, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J].Journal of the American Chemical Society,2009,131(44):16000. 18 Pichon A, Lazuengaray A, James S L. Solvent-free synthesis of a microporous metal-organic framework[J].Crystengcomm,2008,8(3):211. 19 Son W J. Sonochemical synthesis of MOF-5[J].Chemical Communications,2009,47(47):6336. 20 Yoo Y, Jeong H K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition[J].Chemical Communications,2008,21:2441. 21 Li W J, Lu J, Gao S Y, et al. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives[J].Journal of Materials Chemistry A,2014,2(45):19473. 22 Kulp E A, Switzer J A. Electrochemical biomineralization: The deposition of calcite with chiral morphologies[J].Journal of the American Chemical Society,2011,129(49):15120. 23 Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J].Science,2013,341(6149):1230444. 24 Ameloot R, Pandey L, Van d A M, et al. Patterned film growth of metal-organic frameworks based on galvanic displacement[J].Chemical Communications,2010,46(21):3735. 25 Mueller U, Puetter H, Hesse M, et al. Electrochemical preparation of crystalline, porous, organometallic framework materials, useful e.g. for storage of gases, such as methane for use in fuel cells, with generation of metal ions from an anode in the preparation medium: US, WO20050498922A1[P].2005. 26 Biemmi E, Christian S, Stock N, et al. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1[J].Microporous & Mesoporous Materials,2009,117(117):111. 27 Campagnol N, Assche T R C V, Stappers L, et al. On the electrochemical deposition of metal-organic frameworks[J].Journal of Materials Chemistry A,2016,4(10):3914. 28 Sachdeva S, Pustovarenko A, Sudhlter E J, et al. Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis[J].Crystengcomm,2016,18(22):4018. 29 Buchan I, Ryder M R, Tan J C. Micromechanical behavior of polycrystalline metal-organic framework thin films synthesized by electrochemical reaction[J].Crystal Growth & Design,2015,15(4):1991. 30 Joaristi A M, Juanalcaiz J, Serracrespo P, et al. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks[J].Crystal Growth & Design,2012,12(7):3489. 31 Assche T R C V, Desmet G, Ameloot R, et al. Electrochemical synthesis of thin HKUST-1 layers on copper mesh[J].Microporous & Mesoporous Materials,2012,158(8):209. 32 Gascon J, Aguado S, Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina[J].Microporous & Mesoporous Materials,2008,113(1):132. 33 Schfer P, Ma V D V, Domke K F. Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis[J].Chemical Communications,2016,52(25):4722. 34 Ameloot R, Stappers L, Fransaer J, et al. Patterned growth of me-tal-organic framework coatings by electrochemical synthesis[J].Chemistry of Materials,2009,21(13):2580. 35 Cohen S I, Linse S, Luheshi L M, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(24):9758. 36 Armand M, Endres F, Macfarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J].Nature Materials,2009,8(8):621. 37 Kumar R S, Kumar S S, Kulandainathan M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction[J].Microporous & Mesoporous Materials,2013,168(3):57. 38 Campagnol N, Assche T V, Boudewijns T, et al. High pressure, high temperature electrochemical synthesis of metal-organic frameworks: Films of MIL-100 (Fe) and HKUST-1 in different morpho-logies[J].Journal of Materials Chemistry A,2013,1(19):5827. 39 Yang H M, Song X L, Yang T L, et al. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction[J].RSC Advances,2014,4(30):15720. 40 Yang H, Du H, Zhang L, et al. Electrosynthesis and electrochemical mechanism of Zn-based metal-organic frameworks[J].International Journal of Electrochemical Science,2015,10(2):1420. 41 Mueller U, Schubert M, Teiche F, et al. Metal-organic frameworks prospective industrial applications[J].Journal of Materials Chemistry,2006,16(7):626. 42 Stassen I, Styles M, Assche T V, et al. Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap[J].Chemistry of Materials,2015,27(5):379. 43 Yadnum S, Roche J, Lebraud E, et al. Site-selective synthesis of janus-type metal-organic framework composites[J].Angewandte Chemie International Edition,2014,53(15):4001. 44 Liu H, Wang H, Chu T, et al. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution[J].Journal of Materials Chemistry C,2014,2(41):1229. 45 Davydovskaya P, Pohle R, Tawil A, et al. Work function based gas sensing with Cu-BTC metal-organic framework for selective aldehyde detection[J].Sensors & Actuators B Chemical,2013,187(1):142. 46 Yang Q, Xue C, Zhong C, et al. Molecular simulation of separation of CO2, from flue gases in CU-BTC metal-organic framework[J].AICHE Journal,2007,53(11):2832. 47 Marx S, Kleist W, Baiker A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J].Journal of Catalysis,2011,281(1):76. 48 Khun N W, Mahdi E M, Ying S, et al. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes[J].APL Materials,2014,2(12):124101. 49 Vandevoorde B, Ameloot R, Stassen I, et al. Mechanical properties of electrochemically synthesised metal-organic framework thin films[J].Journal of Materials Chemistry,2013,1(46):7716. 50 Campagnol N, Souza E R, De Vos D E, et al. Luminescent terbium-containing metal-organic framework films: New approaches for the electrochemical synthesis and application as detectors for explosives[J].Chemical Communications,2014,50(83):12545. 51 Cheng K Y, Wang J C, Lin C Y, et al. Electrochemical synthesis, characterization of Ir-Zn containing coordination polymer, and application in oxygen and glucose sensing[J].Dalton Transactions,2010,43(17):6536. 52 Li M, Dinc M. Reductive electrosynthesis of crystalline metal-organic frameworks[J].Journal of the American Chemical Society,2011,133(33):12926. 53 Kubo M, Chaikittisilp W, Okubo T. Oriented films of porous coordination polymer prepared by repeated in situ crystallization[J].Che-mistry of Materials,2008,20(9):2887. 54 Lu H, Zhu S. Interfacial synthesis of free-standing metal-organic framework membranes[J].European Journal of Inorganic Chemistry,2013,2013(8):1294. 55 Li M M, Dinc M. Selective formation of biphasic thin films of me-tal-organic frameworks by potential-controlled cathodic electrodeposition[J].Chemical Science,2013,5(1):107. 56 Zhu Y M, Zeng C H, Chu T S, et al. A novel highly luminescent LnMOF film: A convenient sensor for Hg2+ detecting[J].Journal of Materials Chemistry A,2013,1(37):11312. 57 Li W J, Feng J F, Lin Z J, et al. Patterned growth of luminescent metal-organic framework films: A versatile electrochemically-assisted microwave deposition method[J].Chemical Communications,2016,52(20):3951. |
|
|
|