REVIEW PAPER |
|
|
|
|
|
A Review of the Ring-opening Metathesis Polymerization Involving Norbornene or Its Derivatives |
JIANG Qiliang1, CHEN Qi1, JIANG Fuben1, CHEN Cheng2, VERPOORT Francis1,2
|
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070; 2 State Key Laboratory of Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 |
|
|
Abstract Ring-opening metathesis polymerization (ROMP) of cyclic olefins, a well-established reaction, is one of the most effective means to transform carbon-carbon double bonds and has been widely used in polymer science and organic chemistry. ROMP of cyclic olefins occurs in the presence of a metal carbene catalyst which breaks the carbon-carbon double bonds of the cyclic olefins and connects them into new unsaturated polymers. The research over the cyclic olefins metathesis polymerization was initiated in the 1950s, focusing originally on the catalytic polymerization of cyclic olefins using Ziegler-Natta catalytic systems consisting of transition metal complexes mainly based on Ti, Re, W, Mo, etc. Since the middle of the 1980s, the investigations were concentrated on the polymerization mechanism and alkylidene or carbene catalysts. With the establishment of well-defined, stable and efficient catalysts, the researchers’ concern has been turned to new applications of cycloolefin polymers, and also to developing new cycloolefin ROMP monomers. For the ROMP reaction, norbornene and its derivatives have been studied extensively since they are highly reactive, easily accessible and relatively low-cost. Besides the expansion of the monomer species available for ROMP, continuous research endeavors have been made to enhance the ROMP resultant polymers’ performance and application potential, mainly from the aspects of the steric hindrance, chemical configuration, pendant polarities of norbornene-based monomers, and the copolymerization of other cyclic olefins or norbornene-based monomers, as well as conjunction with other polymerization methods. The ROMP of norbornene and its derivatives also made certain advances in the fields of flame retardancy, ion exchange or proton exchange membranes, nanomaterials, biomedical materials and so on, in which flame retardant materials made from norbornene or norbornene derivatives have long been researched and broadly achieved industrialization. In the field of exchange membranes, researchers concentrate on applying norbornene-based polymer membranes to fuel cell due to their thermal stability, acid and alkali resistance, and electrical conductivity. Nanomaterials is one of the most popular research fields in recent years, and nano-metal/polymer composites and magnetic polymer nanocomposites have realized tentative application. The biomedical materials especially drug delivery systems which involve norbornene derivatives have displayed impressive potential, though the industrialization and commercialization still deserve further exploration. Additionally, the norbornene-derivative-based graft polymers, block polymers, liquid crystal polymers, and conductive polymers have also drawn researchers’ attention. We herein briefly describe the reaction mechanism of ROMP with norbornene and its derivatives as monomer, as well as the ROMP catalysts’ multistage development, i.e. multi-component catalytic systems, molybdenum- or tungsten-based catalytic systems, and ruthenium-based catalytic systems. Moreover, the paper mainly focuses on the recent research progress of ROMP process and products with respect to the norbornene species in the above mentioned fields, and ends with a prospective discussion over the expected new directions of this emerging research topic.
|
Published: 10 April 2018
Online: 2018-05-11
|
|
|
|
1 张玉清.聚双环戊二烯[M].北京:化学工业出版社,2015. 2 Novak B M, Risse W, Grubbs R H. The development of well-defined catalysts for ring-opening olefinmetathesis polymerizations (ROMP)[J].Advances in Polymerence,1992,102(1):47. 3 Zhang D F. Advances in the study on ring-opening metathesis polymerization of norbornene and its derivatives[J].Polymeric Materials Science and Engineering,2000,16(1):13(in Chinese). 张丹枫.降冰片烯及其衍生物开环易位聚合的研究进展[J].高分子材料科学与工程,2000,16(1):13. 4 Cao K,Yuan B,Liu X, et al. Preparation and applications of the chiral norbornene derivatives[J].Progress in Chemistry,2017,29(6):605(in Chinese). 曹堃,袁贝,刘学,等.手性降冰片烯衍生物的制备及应用[J].化学进展,2017,29(6):605. 5 Zhang Y, Song Y X, Shi J L, et al. Synthesis of nobornene[J].Chemical Industry andEngineering Progress,2013,32(12):2800(in Chinese). 张岩,宋月潇,史家乐,等.降冰片烯的合成研究进展[J].化工进展,2013,32(12):2800. 6 Pascual L M, Goetz A E, Roehrich A M, et al. Investigation of tacticity and living characteristics of photoredox-mediated metal-free ring-opening metathesis polymerization[J].Macromolecular Rapid Communications,2017,38(13):13. 7 Hérisson J L, Chauvin Y. Catalyse de transformation des oléfines par les complexes dutungstène. II.Télomérisation des oléfines cycliques en présenced’oléfines acycliques[J].Die Macromolecular Chemistry & Physics,1971,141(1):161. 8 Arlie J P, Chauvin Y, Commereuc D, et al.Catalyse de transformation des oléfines par les complexes du tungstène, 4. Evolution dela distribution des masses moléculaires au cours de la polymérisation des cyclooléfines[J].Die Makromolekulare Chemie,2003,175:861. 9 Kong Y, Yang X H, Wang L, et al. Research advances of ring-ope-ning metathesis polymerization[J].Science Technology and Enginee-ring,2015,15(30):71(in Chinese). 孔勇,杨小华,王琳,等.开环易位聚合研究进展[J].科学技术与工程,2015,15(30):71. 10Schrock R R, Murdzek J S, Gui C B, et al.Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins[J].Journal of the American Chemical Society,1990,112:3875. 11Bazan G C, Khosravi E, Schrock R R, et al. Living ring-opening metathesis polymerization of 2,3-difunctionalized norbornadienes by Mo(CH-t-Bu)(N-2,6-C6H3-i-Pr2)(O-t-Bu)2[J].Journal of the American Chemical Society,1990,112:8378. 12Mann T J, Speed A W, Schrock R R, et al. Catalytic Z-selective cross-metathesis withsecondary silyl-and benzyl-protected allylicethers: Mechanistic aspects and applications tonatural product synthesis[J].Angewandte Chemie International Edition,2013,52:8395. 13 Schrock R R. Synthesis of stereoregular polymers through ring-ope-ning metathesis polymerization[J].Accounts of Chemical Research,2014,47(8):2457. 14 Schrock R R, Hoveyda A H. Molybdenum and tungsten imido alkylidene complexes asefficient olefin-metathesis catalysts[J].Angewandte Chemie,2003,42(38):4592. 15 Grubbs R H. Olefin metathesis[J].Cheminform,2004,35(43):7117. 16 Schwab P, France M B, Ziller J W, et al. A series of well-defined metathesis catalysts-synthesis of [RuCl2(CHR)(PR3)2] and its reactions[J].Angewandte Chemie International Edition,2010,34:2039. 17 Schwab P, Grubbs R H, Ziller J W. Synthesis and applications of RuCl2(CHR)(PR3)2: The influence of the alkylidene moiety on metathesis activity[J].Journal of the American Chemical Society,2016,118(1):100. 18 Scholl M, Ding S, Lee C W, et al. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands[J].Cheminform,1999,1(6):953. 19 Choi T L, Grubbs R H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst[J].Angewandte Chemie,2003,42(15):1743. 20Liu G Y. Synthesis and catalytic activities of functionalized ruthe-nium carbene catalystsfor olefin metathesis[D].Tianjin:Tianjin University,2009(in Chinese). 刘桂艳.功能化钌卡宾烯烃复分解催化剂的合成及性能研究[D].天津:天津大学,2009. 21Vehlow K, Wang D, Buchmeiser M R, et al. Alternating copolyme-rizations using a Grubbs-type initiator with an unsymmetrical, chiral N-heterocyclic carbene ligand[J].Angewandte Chemie,2008,47(14):2615. 22Martin L, Wang D, Kati V, et al. Alternating ring-opening metathesis copolymerizationby Grubbs-type initiators with unsymmetrical N-heterocyclic carbenes[J].Chemistry,2009,15(37):9451. 23 Bielawski C W, Benitez D, Grubbs R H. An “endless” route to cyclic polymers[J].Science,2002,297(5589):2041. 24 Bielawski C W, Benitez D, Grubbs R H. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: The importance of removing trace linear contaminants[J].Journal of Bacteriology,2003,125(28):8424. 25 Kong Y, Cheng M, Ren H, et al. Synthesis,structures, and norbornene polymerization behavior of bis (aryloxide-N-heterocyclic carbene) nickel complexes[J].Organometallics,2009,28(20):1677. 26 Kong Y, Tang Y, Wang Z, et al. Ruthenium ring-opening metathesis polymerization catalysts bearing O-aryloxide-N-heterocyclic carbenes[J].Macromolecular Chemistry & Physics,2013,214:492. 27 Torker S,Müller A, Chen P. Building stereoselectivity into a chemoselective ring-opening metathesis polymerization catalyst for alternating copolymerization[J].Angewandte Chemie International Edition,2010,122(22):3762. 28 Torker S, Müller A, Sigrist R, et al. Tuningthe steric properties of a metathesis catalystfor copolymerization of norbornene and cyclooctene toward complete alternation[J].Organometallics,2010,29(12):2735. 29 Chaves H K, Ferraz C P, Jr V P C, et al.Tuning the activity of alternative Ru-based initiators for ring-opening metathesis polymerization of norbornene and norbornadiene by the substituent in 4-CH2R-piperidine[J].Journal of Molecular Catalysis A Chemical,2014,385(385):46. 30Zhang Y J, Zhang C M, Du L Y, et al. Application progress of norbornene derivativeon polymer material[J].New Chemical Materials,2016(7):21(in Chinese). 张亚杰,张朝明,杜丽媛,等.降冰片烯类化合物在高分子材料中的应用进展[J].化工新型材料,2016(7):21. 31Khasat N P, Leach D. Polydicyclopentadiene having improved stabi-lity and toughened with polymeric particles:US,US 5480940 A[P].1996. 32Sjardijn W, Snel J J M. Copolymerization of dicyclopentadiene with norbornene derivatives:US,US5248745[P].1993. 33 Risse W, Grubbs R H. Block and graft copolymers by living ring-opening olefin metathesis polymerization[J].Progress in PolymerScience,2007,32(1):1. 34 Cox J R, Kang H A, Igarashi T, et al. Norbornadiene end-capping of cross-coupling polymerizations: A facile route to triblock polymers[J]. ACS Macro Letters,2012,1(2):334. 35 Bielawski C W, Benitez D, Takeharu Morita A, et al. Synthesis of end-functionalized poly(norbornene)s via ring-opening metathesis polymerization[J].Macromolecules,2001,34(25):8610. 36 Liaw D J, Chen T P, Huang C C. Self-assembly aggregation of highly stable copolynorbornenes with amphiphilic architecture via ring-opening metathesis polymerization[J].Macromolecules,2005,38:3533. 37 Lin T, Chou C, Lin N, et al. End group modification of polynorbornenes[J].Macromolecular Chemistry & Physics,2015,215:2357. 38 Xuan M F. Processing and application of polydicyclo pentadiene RIM products[J].Liming Research Institute of Chemical Industry,1995(5):5(in Chinese). 宣美福.聚双环戊二烯RIM制品的加工与应用[J].黎明化工研究院,1995(5):5. 39 Seehof N, Mehler C, Breunig S, et al. Pd2+,catalyzed addition polymerizations of norbornene and norbornene derivatives[J].Journal of Molecular Catalysis,1992,76(1-3):219. 40Leventis N, Sotiriouleventis C, Mohite D P,et al. Polyimide aerogels by ring-opening metathesis poly merization (ROMP)[J].Chemistry of Materials,2011,23(8):2250. 41Wang C M. Polynorbornenes contain functional side groups were synthesized by ring-opening metathesis polymerization[D].Jinan:Shandong University,2008(in Chinese). 王赐明.采用ROMP的方法合成含有功能侧基的聚降冰片烯[D].济南:山东大学,2008. 42Yao F. Preparation and properties of polynorbornenes by ROMP[D].Changchun:Changchun University of Science and Technology,2015(in Chinese). 姚芬.ROMP法制备降冰片烯类聚合物及其性能研究[D].长春:长春理工大学,2015. 43 Chaimongkolkunasin S, Hou X, Nomura K.Ring opening metathesis polymerization of norbornene and tetracyclododecene with cyclooctene by using (arylimido)vanadium(V)-alkylidene catalyst[J].Journal of Polymer Science Part A Polymer Chemistry,2017,55(18):3067. 44 Liu L, Feng H N, Fu G R, et al. Efficient NIR (near-infrared) luminescent ZnLn-grafted (Ln=Nd, Yb or Er) PNBE (poly(norbornene))[J].Journal of Luminescence,2017,186:23. 45 Allcock H R, Laredo W R, Morford R V. Polymer electrolytes derived from polynorbornenes with pendent cyclophosphazenes: Poly(ethylene glycol) methyl ether (PEGME) derivatives[J].Solid State Ionics,2001,139(1):27. 46 Cui J, Yang J X, Pan L, et al. Synthesis of novel cyclic olefin polymer with high glass transition temperature via ring-opening metathesis polymerization[J].Macromolecular Chemistry & Physics,2016,217:2708. 47 Sun F Y. Patent analysis of fuel cell car technology[J]. Journal of Chongqing University of Technology(Natural Science Edition), 2017,31(1):21(in Chinese). 孙凤艳.燃料电池汽车技术专利态势分析[J].重庆理工大学学报(自然科学版),2017,31(1):21. 48 Zhao Y C, Zhang L J, Xu G F, et al. Synthesis of polymer electrolyte membranes based on poly(norbornene)s functionalized withpendant difluoroalkylsulfonic acids[J].Scientia Sinica,2011,41:1833. 49 Li X, Zhao Y, Feng Z, et al. Ring-openingmetathesis polymerization for the preparationof polynorbornene-based proton exchange membranes with high proton conductivity[J].Journal of Membrane Science,2017,528:55. 50Feng Z M, Zhao Y, Li X, et al. Synthesis and characterization of a novel norbornene based copolymer[J].Journal of Chemical Industry and Engineering,2015,66(s2):439(in Chinese). 冯志明,赵阳,李雪,等.一种新型聚降冰片烯类无规共聚物的合成与表征[J].化工学报,2015,66(s2):439. 51Zhao Y. Preparation and properties of polynorbornenes based on ring-opening metathesispolymerization for proton exchange membranes[D].Beijing:Beijing Institute of Technology,2016(in Chinese). 赵阳.聚降冰片烯质子交换膜的制备及性能研究[D].北京:北京理工大学,2016. 52Zhen L D. Ring-opening metathesis polymerization of norbornene derivatives containing ionic liquids on side chains[D]. Shanghai:East China Normal University,2006(in Chinese). 郑灵娣.侧链含离子液体的降冰片烯类衍生物的开环易位聚合[D].上海:华东师范大学,2006. 53 Zhao Y B, Wang S B, Zhao Y, et al. Preparation of quaternary ammonium functionalized norbornene derivatives anion exchange membrane[J].Journal of Chemical Industry and Engineering,2015,66(s1):338(in Chinese). 赵玉彬,王树博,赵阳,等.降冰片烯类季铵型阴离子交换膜的制备[J].化工学报,2015,66(s1):338. 54 Feng L, Zhao Y B, Xie X F, et al. Preparation of tunable quaternary ammonium functionalized norbornene derivatives anion exchange membrane[J].Journal of Chemical Industry and Engineering(China),2015,66(s2):257(in Chinese). 冯磊,赵玉彬,谢晓峰,等.可控型季铵化降冰片烯衍生物阴离子交换膜的制备[J].化工学报,2015,66(s2):257. 55 He X, Liu J, Zhu H, et al. Novel quaternary ammonium functional addition-type norbornene copolymer as hydroxide-conductive anddurable anion exchange membrane for directmethanol fuel cells[J].RSC Advances,2015,5(78):63215. 56 Watson K J, Zhu J, et al. Hybrid nanoparticles with block copolymer shell structures[J].Journal of the American Chemical Society,2016,121(2):462. 57 Neqal M, Pichavant L, Gauthier M, et al. Plurifunctional polyglycidol-based particles prepared by dispersion ring-opening metathesispolymerization[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2016,510:254. 58 Jeong W, Kessler M R. Toughness enhancement in ROMP functio-nalized carbon nanotube/polydicyclopentadiene composites[J].Che-mistry of Materials,2008,20(22):7060. 59 Amendt M A, Chen L, Hillmyer M A. Formation of nanostructured poly(dicyclopentadiene) thermosets using reactive block polymers[J].Macromolecules,2015,43(8):3924. 60Xia Y, Boydston A J, Grubbs R H. Synthesis anddirect imaging of ultrahigh molecularweight cyclicbrush polymers[J].AngewandteChemie,2011,123(26):6004. 61Chai W C. Modification and functionalization of halloysite nanotubes via living ring open metathesis polymerization[D].Zhengzhou:Zhengzhou University,2013(in Chinese). 柴文翠.活性开环易位聚合功能化修饰埃洛石纳米管研究[D].郑州:郑州大学,2013. 62Belfield K D, Li Z. Norbornene-functionalized diblock copolymers via ring-opening metathesis polymerization for magnetic nanoparticle stabilization[J].Chemistry of Materials,2006,18(25):5929. 63 Alfred S F, Al-Badri Z M, Madkour A E, et al. Water soluble poly(ethylene oxide) functionalized norbornene polymers[J].Journal of Polymer Science Part A Polymer Chemistry,2008,46(8):2640. 64 Sutthasupa S, Sanda F. Synthesis of diblockcopolymers of indo-methacin/aspartic acid conjugated norbornenes and characterization of their self-assembled nanostructures as drug carriers[J].European Polymer Journal,2016,85:211. 65 Sutthasupa S, Terada K, Sanda F, et al. Ring-opening metathesis polymerization of amino acid-functionalized norbornene derivatives[J].Journal of Polymer Science Part A Polymer Chemistry,2006,44(18):5337. 66 Sutthasupa S, Terada K, Sanda F, et al. Ring-opening metathesis polymerization of amino acid-functionalized norbornene diester mo-nomers[J].Polymer,2007,48(11):3026. 67 Sutthasupa S, Sanda F, Masuda T. Ring-opening metathesis polymerization of amino acid-functionalized norbornene diamide monomers: Polymerization behavior and chiral recognition ability of the polymers[J].Macromolecular Chemistry & Physics,2008,209:930. 68 Baumgartner R, Kuaib D, Cheng J. Synthesis of controlled, high-molecular weight poly(L-glutamic acid) brush polymers[J].Biomaterials Science,2017,5:1836. 69 Tran T H, Nguyen C T, Gonzalezfajardo L,et al. Long circulating self-assembled nanoparticles from cholesterol-containing brush-like block copolymers for improved drug delivery to tumors[J].Biomacromolecules,2014,15(11):4363. 70Manning D D, Hu X, Beck P, et al. Synthesis of sulfated neoglycopolymers: Selective P-selectin inhibitors[J].Journal of the American Chemical Society,1997,119(13):3161. 71Allen M J, Wangkanont K, Raines R T, etal. ROMP from ROMP: A new approach tograft copolymer synthesis[J].Macromolecules,2009,42(12):4023. 72Dong W, Zhang Q P, Du C, et al. Graft copolymers prepared by ring-opening metathesis polymerization of poly(ethylene glycol)-substituted norbornenemacromonomers[J].Journal of Jilin University(Science Edition),2012,50(3):567(in Chinese). 董薇,张秋平,杜创,等.降冰片烯大分子单体开环易位聚合制备PEG取代的接枝共聚物[J].吉林大学学报(理学版),2012,50(3):567. 73 Li K, Xu F, Feng L, et al. Application of ring-opening metathesis polymerization in synthesis of functional macromolecules[J].Chemical Reaction Engineering and Technology,2015,31(6):515(in Chinese). 李凯,徐梵,冯露,等.活性开环移位聚合在制备功能大分子中的应用[J].化学反应工程与工艺,2015,31(6):515. 74 Yang S K, Ambade A V, Weck M. Supramolecular ABC triblock copolymers via one-pot, orthogonal self-assembly[J].Journal of the American Chemical Society,2010,132(5):1637. 75 Watkins D M, Fox M A. Synthesis and photophysical characterization of aryl-substituted polynorbornenediol acetal and ketal multiblock copolymers[J].Macromolecules,2002,28(14):4939. 76 Kang H A, Bronstein H E, Swager T M. Conductive block copolymers integrated intopolynorbornene-derived scaffolds[J].Macromolecules,2008,41(15):5540. 77 He X H, Shi L, Nie H R, et al. Synthesis and addition polymerization of norbornene derivative witha functional group of pendent azobenzene[J].Journal of South China University of Technology(Natural Science Edition),2010,38(9):68(in Chinese). 贺晓慧,石玲,聂华荣,等.5-位含偶氮苯功能基团的降冰片烯衍生物的合成及加成聚合[J].华南理工大学学报(自然科学版),2010,38(9):68. 78 Liaw D J, Wang K L, Lee K R, et al. Ring-opening metathesis polymerization of newnorbornene-based monomers containing various chromophores[J].Journal of Polymer Science Part A Polymer Che-mistry,2007,45(14):3022. 79 Krohm F, Kind J, Savka R, et al. Correction: Photochromic spiropyran-and spirooxazine-homopolymers in mesoporous thin films bysurface initiated ROMP[J].Journal of Materials Chemistry C,2016,4(18):4067. 80Guadagno L, Mariconda A, Agovino A, et al. Protection of graphene supported ROMPcatalyst through polymeric globular shell in self-healing materials[J].Composites Part B:Engineering,2017,116: 352. 81Novoa S, Paquette J A, Barbon S M, et al.Side-chain boron difluoride formazanate polymers via ring-opening metathesis polymerization[J].Journal of Materials Chemistry C,2016,4(18):3987. 82Zhao Y, Zhang K. Thermoresponsive polymers based on ring-ope-ning metathesis polymerization[J].Polymer Chemistry,2016,7:4081. 83 Xie M, Dang J, Han H, et al. Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP,ROMP,and ATRP[J].Macromolecules,2008,41(41):9004. |
[1] |
MA Runshan, WANG Haiyan, ZHANG Qi, YANG Jianxin, TANG Bin, LI Rui, LI Shuangshou, LIN Wanming, FAN Jinping. Effect of MXene on the Catalytic Performance of Bimetallic Catalysts for Zinc-Air Batteries[J]. Materials Reports, 2025, 39(2): 24020010-8. |
|
|
|
|