REVIEW PAPER |
|
|
|
|
|
Research Progress on Physical Properties and Chemical Stability of Two-dimensional Black Phosphorus |
JIA Lei, LEI Tianmin
|
School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071 |
|
|
Abstract Black phosphorus was first successfully synthesized in the bulk form in 1914. After remaining silent for 100 years, the novel 2D-nanomaterial formed by attenuating bulk black phosphorus into the multilayer state, i.e. 2D black phosphorus, was firstly obtained in 2014. This layered 2D semiconductor material consisting of only phosphorus atoms has from then onward been drawing intensive interest in the field of low-dimensional inorganic semiconductor because of its rich variety of special electrical and optical properties such as appropriate tunable direct bandgap, high carrier mobility, high leakage current modulation ratio, relatively high on-off current ratio, good electrical and thermal conductivity and strong in-plane anisotropy. 2D black phosphorus is an intrinsic p-type material with a series of excellent properties, but the production of large-area phosphorene (i.e. monolayer black phosp-horus) film has so far remained unrealized due to the instability of 2D black phosphorus. This article intends to make a review of the research progress on 2D black phosphorus. We here introduce systematically the structure, preparation and properties of 2D black phosphorus, also offer a detailed description of its physical properties (electronic, optical, mechanical, thermal, magnetic) and chemical stability. The paper ends with the rough summary and discussion on the research prospect of this emerging new material with sharp momentum.
|
Published: 10 April 2018
Online: 2018-05-11
|
|
|
|
1 Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet[J].Applied Physics Letters,2012,97(22):183.
2 Dávila M E, Xian L, Cahangirov S, et al. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene[J].New Journal of Physics,2014,16(9):3579.
3 Li L F, Lu S Z, Pan J, et al. Buckled germanene formation on Pt(111)[J].Advanced Materials,2014,26(28):4820.
4 Mannix A J, Zhou X F, Kiraly B, et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs[J].Science,2015,350(6267):1513.
5 Zhang S L, Yan Z, Li Y F, et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions[J].Angewandte Chemie,2015,54(10):3112.
6 Ji J P, Song X F, Liu J Z, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy[J]. Nature Communications,2016,7:13352.
7 Bridgman P W. Two new modifications of phosphorus[J].Journal of the American Chemical Society,1914,36(7):1344.
8 Liu H, Neal A T, Zhu Z, et al. Phosphorene: A new 2D material with high carrier mobility[J].Eprint Arxiv,2014,8(4):4033.
9 Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J].Nature Nanotechnology,2014,9(35):372.
10Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus[J].Proceedings of the National Academy of Sciences,2015,112(15):4523.
11Xia F N, Wang H, Jia Y C, et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J].Nature Communication,2014,5:4458.
12Reich E S. Phosphorene excites materials scientists[J].Nature,2014,506(7486):19.
13 Asahina H, Shindo K, Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach[J].Journal of the Physical Society of Japan,1982,51(4):1193.
14 Takao Y, Morita A. Electronic structure of black phosphorus: Tight binding approach[J].Journal of the Physical Society of Japan,1981,105(s1-3):93.
15 Cao P, Wu J, Zhang Z, et al. Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus[J].Nanotech-nology,2016,28(4):045702.
16 Yasaei P, Kumar B, Foroozan T, et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation[J].Advanced Ma-terials,2015,27(11):1887.
17 Brent J R. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J].Chemical Communications, 2014,50(87):13338.
18 Chen L, Zhou G M, Liu Z B, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery[J].Advanced Materials,2015,28(3):510.
19 Woomer A H, Farnsworth T W, Hu J, et al. Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy[J].Acs Nano,2015,9(9):8869.
20Smith J B, Hagaman D, Ji H F. Growth of 2D black phosphorus film from chemical vapor deposition[J].Nanotechnology,2016,27(21):215602.
21Yang Z, Hao J, Yuan S, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J].Advanced Materials,2015,27(25):3748.
22Lewis E A, Brent J R, Derby B, et al. Solution processing of two-dimensional black phosphorus[J].Chemical Communications,2017,53:1445.
23 Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J].Acs Nano,2014,8(4):4033.
24 Qiao J S, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J].Nature Communications,2014,5:4475.
25 Du Y L, Ouyang C, Shi S, et al. Ab initio studies on atomic and electronic structures of black phosphorus[J].Journal of Applied Phy-sics,2010,107(9):093718.
26 Castellanosgomez A, Vicarelli L, Prada E, et al. Isolation and chara-cterization of few-layer black phosphorus[J].2D Materials,2014,1(2):025001.
27 Zhang S, Yang J, Xu R J, et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene[J].Acs Nano,2014,8(9):9590.
28 Liang L B, Wang J, Lin W Z, et al. Electronic bandgap and edge reconstruction in phosphorene materials[J].Nano Letters,2014,14(11):6400.
29 Ju W W, Li T W, Yong Y L, et al. Band gap of few-layer black phosphorus modulated by thickness and strain[J].Journal of Atomic and Molecular Physics,2015,32(2):329(in Chinese).
琚伟伟,李同伟,雍永亮,等.多层黑磷中厚度和应力依赖的能隙变化研究[J].原子和分子物理学报,2015,32(2):329.
30Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus[J].Applied Physics Letters,2014,104(10):10451.
31Sorkin V, Cai Y, Ong Z, et al. Recent advances in the study of phosphorene and its nanostructures[J].Critical Reviews in Solid State & Material Sciences,2016,42(1):1.
32Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus[J].Applied Physics Letters,2014,104:103106.
33 Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J].Physical Review B,2014,89(23):817.
34 Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146(9):351.
35 Lin M W, Ling C, Zhang Y, et al. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors[J].Nanotechnology,2011,22(26):265201.
36 Sorkin V, Pan H, Shi H, et al. Nanoscale transition metal dichalcogenides: Structures, properties, and applications[J].Critical Reviews in Solid State & Materials Sciences,2014,39(5):319.
37 Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J].Nature Nanotechnology,2011,6(3):147.
38 Peelaers H, Van d W C G. Effects of strain on band structure and effective masses in MoS2[J].Physical Review B,2012,86(24):233.
39 Carvalho A, Rodin A S, Neto A H C. Phosphorene nanoribbons[J].Europhysics Letters,2014,108(4):47005.
40Rodin A S, Carvalho A, Neto A H C. Strain-induced gap modification in black phosphorus[J].Physical Review Letters,2014,112(17):176801.
41Peng X H, Wei Q, Copple A. Strain engineered direct-indirect band gap transition and its mechanism in 2D phosphorene[J].Physical Review B,2014,90(8):085402.
42Jing Y, Tang Q, He P, et al. Small molecules make big differences: Molecular doping effects on electronic and optical properties of phosphorene[J].Nanotechnology,2015,26(9):095201.
43 Dai J, Zeng X C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells[J].Journal of Physical Chemistry Letters,2014,5(7):1289.
44 Liu Q, Zhang X, Abdalla L B, et al. Switching a normal insulator into a topological insulator via electric field with application to phosphorene[J].Nano Letter,2015,15(2):1222.
45 Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J].Nature Communications,2015,6:8536.
46 Çakir D, Sahin H, Peeters F M. Tuning of the electronic and optical properties of single layer black phosphorus by strain[J].Physical Review B,2014,90(20):205421.
47 Jiang J W, Park H S. Mechanical properties of single-layer black phosphorus[J].Journal of Physics D Applied Physics,2014,47(38):385304.
48 Wei Q, Peng X H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus[J].Applied Physics Letters,2014,104(25):372.
49 Jiang J W, Park H S. Negative poisson’s ratio in single-layer black phosphorus[J].Nature Communication,2014,5:4727.
50Wang J Y. Electric and optoelectronic properties of black phosphorus and related heterostructures[D]. Harbin: Harbin Institute of Technology,2015(in Chinese).
王佳瑛.黑磷光电特性及其异质结器件研究[D].哈尔滨:哈尔滨工业大学,2015.
51Pan D X. Anisotropic bending behaviors and bending induced buckling in single-layered black phosphorus[J].Chinese Science Bulletin,2015(8):764(in Chinese).
潘斗兴.单层黑磷弯曲变形的各向异性及其失稳现象[J].科学通报,2015(8):764.
52Sha Z D, Pei Q X, Zhang Y Y, et al. Atomic vacancies significantly degrade the mechanical properties of phosphorene[J]. Nanotechnology, 2016, 27(31):315704.
53 Lee S, Yang F, Suh J, et al. Anisotropic in-plane thermal conducti-vity of black phosphorus nanoribbons at temperatures higher than 100 K[J].Nature Communications,2015,6:8573.
54 Gusmao R, Sofer Z, Pumera M. Black phosphorus rediscovered: From bulk to monolayer[J].Angewandte Chemie International Edition,2017,129(28):8164.
55 Zheng H L. The first-principles study on the magnetic propertic of two-dimensional semiconductors[D].Changchun: Jilin University,2016(in Chinese).
郑会玲.二维半导体材料磁性的第一性原理研究[D]. 长春:吉林大学,2016.
56 Tan X Y, Wang J H, Zhu Y Y, et al. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur[J].Acta Physica Sinica,2014,63(20):207301(in Chinese).
谭兴毅,王佳恒,朱祎祎,等.碳、氧、硫掺杂二维黑磷的第一性原理计算[J].物理学报,2014,63(20):207301.
57 Kulish V V, Malyi O I, Persson C, et al. Adsorption of metal adatoms on single-layer phosphorene[J].Physical Chemistry Chemical Physics,2015,17(2):992.
58 Seixas L, Carvalho A, Neto A H C. Atomically thin dilute magne-tism in Co-doped phosphorene[J].Physics,2015,91:155138.
59 Sui X L, Si C, Shao B, et al. Tunable magnetism in transition-metal-decorated phosphorene[J].Journal of Physical Chemistry C,2015,119(18):10059.
60Hashmi A, Hong J S. Transition metal doped phosphorene: First-principles study[J].Journal of Physical Chemistry C,2015,119(17):9198.
61Wang H B, Zhu S S, Fan F R, et al. Structure and magnetism of Mn, Fe, or Co adatoms on monolayer and bilayer black phosphorus[J].Journal of Magnetism & Magnetic Materials,2015,401:706.
62Koenig S P, Doganov R A, Seixas L, et al. Electron doping of ultrathin black phosphorus with Cu adatoms[J].Nano Letters,2016,16(4):2145.
63 Yu W Y, Zhu Z L, Niu C Y, et al. Dilute magnetic semiconductor and half-metal behaviors in 3d transition-metal doped black and blue phosphorenes: A first-principles study[J].Nanoscale Research Letters,2016,11(1):77.
64 Zhou Q H, Chen Q, Tong Y L, et al. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection[J].Angewandte Chemie,2016,55(38):11437.
65 Favron A, Gaufrès E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J].Nature Materials,2015,14(8):826.
66 Na J H, Park K, Kim J T, et al. Air-stable few-layer black phosphorus phototransistor for near-infrared detection[J].Nanotechnology,2017,28:085201.
67 Doganov R A, O’Farrell E C, Koenig S P, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere[J].Nature Communications,2015,6:6647.
68 Cai Y Q, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures[J].Journal of Physical Chemistry C,2015,119:13929.
69 Chen X L, Wu Y Y, Wu Z F, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations[J].Nature Communications,2015,6:7315.
70Peng X, Copple A, Wei Q. Edge effects on the electronic properties of phosphorene nanoribbons[J].Journal of Applied Physics,2014,116(14):4033.
71Zhang L, Wan L H, Xu F M, et al. Modulation of electronic structure of phosphorene nanoribbon[J].Journal of Shenzhen University Science and Engineering,2015,32(4):343(in Chinese).
张龙,万浪辉,许富明,等.黑磷纳米带电子结构的调控[J].深圳大学学报理工版,2015,32(4):343.
72Boukhvalov D W, Rudenko A N, Prishchenko D A, et al. Chemical modifications and stability of phosphorene with impurities: A first principles study[J].Physical Chemistry Chemical Physics,2015,17(23):15209.
73 Politano A, Vitiello M S, Viti L, et al. Unusually strong lateral interaction in the CO overlayer in phosphorene-based systems[J].Nano Research,2016,9(9):2598.
74 Jing X,Tang L,Ning P,et al. Research progress on fabrication and application of phosphorene[J].Materials Review A: Review Papers,2016,30(6):149(in Chinese).
金旭,汤立红,宁平,等.黑磷烯制备与应用研究进展[J].材料导报:综述篇,2016,30(6):149.
75 Chen Y T, Ren R, Pu H H, et al. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets[J].Biosensors & Bioelectronics,2017,89:505.
76 Sumeet W, Ylias S, Taimur A, et al. Defining the role of humidity in the ambient degradation of few-layer black phosphorus[J].2D Materials,2017,4(1):015025.
77 Chen C, Youngblood N, Peng R M, et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics[J].Nano Letters,2017,17(2):985. |
|
|
|