REVIEW PAPER |
|
|
|
|
|
A Review on Development and Application of Probabilistic Fatigue Life Prediction Models for Metal Materials and Components |
ZHANG Mingyi, YUAN Shuai, ZHONG Min, BAI Jinsong
|
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 |
|
|
Abstract Because of the uncertainty of fatigue damage process and the uncertain influence factors for fatigue life,it is difficult to predict the fatigue life of metal materials and the variability of fatigue life. Combining the statistical theory and probabilistic me-thod in the fatigue life prediction model is the most important method to describe the uncertain and statistical nature of fatigue process and the variability of fatigue life. In this paper, the development and application of fatigue life prediction model for metal materials are reviewed. The random model based on empirical fatigue life theory, the statistical model for characterizing the variability, the probabilistic model for fatigue life prediction based on microstructure and physical mechanism of fatigue,and the probabilistic model for wide spread damage are introduced and summarized. This paper ends with discussion on the future research direction of fatigue life prediction method.
|
Published: 10 March 2018
Online: 2018-03-10
|
|
|
|
1 Pineau A, McDowell D L, Busso E P, et al. Failure of metals Ⅱ: Fatigue[J].Acta Materialia,2016,107:484. 2 Hong Y S , Zhao A G, Qian G A. Essential characteristic and in-fluential factors for very high cycle fatigue behavior of metallic ma-terials[J].Acta Metallurtica Sinica,2009,45(7):769(in Chinese). 洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009,45(7):769. 3 Tang L, Lu L. Effect of twin lamellar thickness on the fatigue pro-perties of nanotwinned Cu[J].Acta Metallurtica Sinica,2009,45(7):808(in Chinese). 唐恋,卢磊.孪晶片层厚度对纳米孪晶Cu疲劳性能的影响[J].金属学报,2009,45(7):808. 4 Han S W, Shi D Q, Yang X G, et al. Computational study on microstructure sensitive high cycle fatigue dispersivity[J].Acta Metallurtica Sinica,2016,52(3):289(in Chinese). 韩世伟,石多奇,杨晓光,等.微结构相关的高循环疲劳分散性计算方法研究[J].金属学报,2016,52(3):289. 5 Tryon R G, Cruse T A. Probabilistic mesomechanics for high cycle fatigue life prediction[J].Journal of Engineering Materials and Technology,2000,122:209. 6 Przybyla C, Prasannavenkatesan R, Salajegheh N, et al. Microstructure-sensitive modeling of high cycle fatigue[J].International Journal of Fatigue,2010,32:512. 7 Makkonen M. Predicting the total fatigue life in metals[J].International Journal of Fatigue,2009,31:1163. 8 Jiang Y Y, Ding F, Feng M L. An approach for fatigue life prediction[J].Journal of Engineering Materials & Technology,2005,129(2):182. 9 Karlén K, Olsson M. An investigation of the location of fatigue ini-tiation—deterministic and probabilistic aspects[J].International Journal of Fatigue,2014,66:65. 10 Machniewicz T. Fatigue crack growth prediction models for metallic materials Part Ⅰ:Overview of prediction concepts[J].Fatigue & Fracture of Engineering Materials & Structures,2012,36:293. 11 Mansor N I I, Abdullah S, Ariffin A K, et al. A review of the fatigue failure mechanism of metallic materials under a corroded environment[J].Engineering Failure Analysis,2014,42:353. 12 Christ H J. Is thermomechanical fatigue life predictable[J].Procedia Engineering,2013,55:181. 13 Christ H J, Fritzen C P, Kster P. Micromechanical modeling of short fatigue cracks[J].Current Opinion in Solid State and Materials Science,2014,18:205. 14 Chan K S. Roles of microstructure in fatigue crack initiation[J].International Journal of Fatigue,2010,32:1428. 15 Chan K S, Enright M P, Moody J P. Development of a probabilistic methodology for predicting hot corrosion fatigue crack growth life of gas turbine engine disks[J].Journal of Engineering for Gas Turbines and Power,2014,136:022505. 16 Ray A, Patankar R. A stochastic model of fatigue crack propagation under variable-amplitude loading[J].Engineering Fracture Mecha-nics,1999,62:477. 17 Yang J N, Manning S D. Stochastic crack growth analysis methodo-logies for metallic structures[J].Engineering Fracture Mechanics,1990,37:1105. 18 Lehmayr B, Staudacher S. A statistical model for scatter representation in stress life curves[J].Fatigue & Fracture of Engineering Materials & Structures,2012,35:347. 19 Wu W F, Ni C C. A study of stochastic fatigue crack growth mode-ling through experimental data[J].Probabilistic Engineering Mecha-nics,2003,18:107. 20 Lei Y. A stochastic approach to fatigue crack growth in elastic structural components under random loading[J].Acta Mechanica,1999,132:63. 21 Luo J, Bowen P. A probabilistic methodology for fatigue life prediction[J].Acta Materialia,2003,51:3537. 22 Luo J, Bowen P. Statistical aspects of fatigue behaviour in a PM Ni-base superalloy Udimet 720[J].Acta Materialia,2003,51:3521. 23 Liu Y M, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution[J].International Journal of Fatigue,2009,31:476. 24 Wang G S. Intrinsic statistical characteristics of fatigue crack growth rate[J].Engineering Fracture Mechanics,1995,51:787. 25 Lehmayr B, Saudacher S. A statistical model for scatter representation in stress life curves[J].Fatigue & Fracture of Engineering Materials & Structures,2012,35:347. 26 Castillo E, Fernández A, Pinto H, et al. A general regression model for statistical analysis of strain-life fatigue data[J].Materials Letters,2008,62:3639. 27 Wang Q G, Apelian D, Lados D A. Fatigue behavior of A356-T6 aluminum cast alloys. Part Ⅰ. Effect of casting defects[J].Journal of Light Metals,2001,1:73. 28 Wang Q G, Apelian D, Lados D A. Fatigue behavior of A356/357 aluminum cast alloys. Part Ⅰ. Effect of microstructural constituents[J].Journal of Light Metals,2001,1:85. 29 Nyahumwa C, Green N R, Campbell J. Influence of casting technique and hot isostatic pressing on the fatigue of an Al-7Si-Mg alloy[J].Metallurgical and Materials Transactions A,2001,32:349. 30 Yi J Z, Gao Y X, Lee P D, et al. Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys[J].Metallurgical and Materials Transactions A,2003,34:1879. 31 Yi J Z, Lee P D, Lindley T C, et al. Statistical modeling of microstructure and defect population effects on the fatigue performance of cast A356-T6 automotive components[J].Materials Science and Engineering A,2006,43:59. 32 Tryon R G, Cruse T A. A reliability-based model to predict scatter in fatigue crack nucleation life[J].Fatigue & Fracture of Engineering Materials & Structures,1998,21:257. 33 Liu S S, Dong L H, Wang H D, et al. Research and development of remaining fatigue life prediction of crankshaft[J].Material Review A:Review Papers,2015,29(10):116(in Chinese). 刘慎水,董丽虹,王海斗,等.曲轴剩余疲劳寿命评估方法研究进展[J].材料导报:综述篇,2015,29(10):116. 34 De P S, Mishra R S, Smith C B. Effect of microstructure on fatigue life and fracture morphology in an aluminum alloy[J].Scripta Mate-rials,2009,60:500. 35 Ignatovich S R, Kucher A G, Yakushenko A S, et al. Modeling of coalescence of dispersed surface cracks. Part 1. Probabilistic model for crack coalescence[J].Strength of Materials,2004,36:125. 36 Bussac A, Lautridou J C. A probablilistic model for prediction of LCF surface crack initiation in PM alloys[J].Fatigue & Fracture of Engineering Materials & Structures,1993,21:257. 37 Chan K S. Changes in fatigue life mechanism due to soft grains and hard particles[J].Internatio-nal Journal of Fatigue.2010,32:526. 38 Chan K S, Enright M P. Probabilistic micromechanical modeling of fatigue-life variability in Ti alloy[J].Metallurgical and Materials Transactions A,2005,36:2621. 39 Zhu X, Yi J Z, Jones J W, et al. A probabilistic model of fatigue strength controlled by porosity population in a 319-Type cast aluminum alloy: Part Ⅰ. Model development[J].Metallurgical and Materials Transactions A,2007,38:1111. 40 Todinov M T. A probabilistic method for predicting fatigue life controlled by defects[J].Materials Science and Engineering A,1998,255:117. 41 Mura T. A theory of fatigue crack initiation[J].Materials Science and Engineering A,1994,176:61. 42 Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J].Journal of Appllied Mechanics,1981,48:97. 43 Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions[J].Metallurgical and Materials Transactions A,1982,13:117. 44 Venkataraman G, Chung Y W, Mura T. Application of minimum energy formation in a multiple slip band model for fatigue—Ⅰ. Calculation of slip band spacings[J].Acta Metallurgica et Materialia,1991,39:2621. 45 Venkataraman G, Chung Y W, Mura T. Application of minimum energy formation in a multiple slip band model for fatigue—Ⅱ. Crack nucleation and derication of a generalised coffin-manson law[J].Acta Metallurgica et Materialia,1991,39:2631. 46 Chan K S, Enright M P. A scaling law for fatigue crack initiation in steels[J].Scripta Metallurgica,1995,32:234. 47 Chang R, Morris W L, Buck O. Environmental effects on fatigue crack initiation[J].Scripta Metallurgica,1979,13:191. 48 Ihara C, Tanaka T. A stochastic damage accumulation model for crack initiation in high-cycle fatigue[J].Fatigue & Fracture of Engineering Materials & Structures,2000,23:375. 49 Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals[J].Acta Metallurgica et Materialia,1994,42:3493. 50 Mura T, Nakasone Y. A theory of fatigue crack initiation in solids[J].Journal of Applied Mechanics,1990,57:1. 51 Chan K S. A microstructure-based fatigue-crack-initiation model[J].Metallurgical and Materials Transactions A,2003,34:43. 52 Chan K S, Enright M P. A probabilistic micromechanical code for predicting fatigue life variability: Model development and application[J].Journal of Engineering for Gas Turbines and Power,2006,128:889. 53 Chan K S, Tian J W, Yang B, et al. Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200[J].Metallurgical and Materials Transactions A,2009,40:2545. 54 Kapoor R, Sree Hari Rao V, Mishra R S, et al. Probabilistic fatigue life prediction model for alloys with defects: Applied to A206[J].Acta Materialia,2011,59:3447. 55 Schijve J. Fatigue of aircraft materials and structures[J].Internatio-nal Journal of Fatigue,1994,16(1):21. 56 Ostergaard D F, Hillberry B M. Characterization of the variability in fatigue crack propagation data. Probabilistic fracture mechanics and fatigue methods[S].USA:ASTM STP,1983. 57 Sergey S. Probabilistic method for the analysis of widespread fatigue damage in structures[J].International Journal of Fatigue,2005,27(3):223. 58 Rohrbaugh S M, Ruff D, Hillberry B M, et al. A probabilistic fatigue analysis of multiple site damage[C]∥FAA/NASA Internatio-nal Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance.Hamptom,1994:635. 59 Shi P, Mahadevan S. Corrosion fatigue and multiple site damage re-liability analysis[J].International Journal of Fatigue,2003,25:457. 60 Harlow D G, Wei R P. Probability modelling and statistical analysis of damage in the lower wing skins of two retired B-707 aircraft[J].Fatigue & Fracture of Engineering Materials & Structures,2001,24:523. 61 Zhang J P, Zhang J Y, Bao R, et al. Study of methods for evaluating the probability of multiple site damage occurrences[J].Science China Physics,Mechanics & Astronomy,2014,57:65. 62 Santgerma A, Beaufils J Y, Rosemberg B. An example of widespread fatigue damage assessment in A300 susceptible structure[C]∥The Fourth Joined DoD/FAA/NASA Conference on Aging Aircraft.US,Saint-Louis,2000. 63 Kebir H, Roelandt J M, Gaudin J. Monte Carlo simulations of life expectancy using the dual boundary element method[J].Engineering Fracture Mechanics,2001,68(12):1371. 64 Liao M, Shi G, Xiong Y. Analytical methodology for predicting fatigue life distribution of fuselage splices[J].International Journal of Fatigue,2001,23:177. 65 Romlay F R M, Ouyang H, Ariffin A K, et al. Modeling of fatigue crack propagation using dual boundary element method and Gaussian Monte Carlo method[J].Engineering Analysis with Boundary Elements,2010,34:297. 66 Yan X Z, Wang S N, Huang H C. Probability analysis method for aircraft structures containing multiple site damage[J].Journal of Mechanic Strength,2012,34(6):881(in Chinese). 闫晓中,王生楠,黄汉超.飞机结构发生多处损伤的概率分析方法[J].机械强度,2012,34(6):881. |
|
|
|