REVIEW PAPER |
|
|
|
|
|
Research Progress in Polyacrylonitrile (PAN) Based Carbon Nanofibers Electrode Materials for Supercapacitor |
WANG He1, WANG Hongjie1, WANG Wenyu1, JIN Xin1, LIN Tong1,2
|
1 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387; 2 Australian Future Fibres Research and Innovation Center, Deakin University, Geelong VIC 3217 |
|
|
Abstract Supercapacitor is a kind of novel environmental friendly energy storage device between battery and traditional physical capa-citor. Recently, supercapacitor has attracted widely attention from researchers. Electrode material is the core component of the supercapacitor, therefore it has higher research value. Polyacrylonitrile (PAN) based carbon nanofibers have become the hot issue of research in supercapacitor electrode materials due to their good electrospinning property, high carbonization yield, excellent nanostructure, ultrahigh specific surface area, outstanding electrical conductivity and stability. In this review, the polyacrylonitrile (PAN) based carbon nanofibers electrode materials with crosslinked structure and porous structure, electrode materials doped by other element and composite electrode materials with carbon materials, conductive polymer or metal oxide are mainly introduced. The future research directions of polyacrylonitrile based carbon nanofibers electrode materials are also proposed.
|
Published: 10 March 2018
Online: 2018-03-10
|
|
|
|
1 Chen S, He S, Hou H. Electrospinning technology for applications in supercapacitors[J].Current Organic Chemistry,2013,71:1402. 2 Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520. 3 Conway B E. Transition from “supercapacitor” to “battery” beha-vior in electrochemical energy storage[J].Journal of the Electrochemical Society,1991,138(6):1539. 4 Zheng J, Huang J, Jow T. The limitations of energy density for electrochemical capacitors[J].Journal of the Electrochemical Society,1997,144(6):2026. 5 Ishikawa M, Morita M, Ihara M, et al. Electric Double-layer capa-citor composed of activated carbon fiber cloth electrodes and solid polymer electrolytes containing alkylammonium salts[J].Journal of the Electrochemical Society,1994,141(7):1730. 6 Simon P, Gogotsi Y. Materials for electrochemical capacitors[J].Nature Materials,2008,7(11):845. 7 Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel?[J].Advanced Materials,2004,16(14):1151. 8 Nataraj S K, Yang K S, Aminabhavi T M. Polyacrylonitrile-based nanofibers—A state-of-the-art review[J].Progress in Polymer Science,2012,37(3):487. 9 Zussman E, Chen X, Ding W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J].Carbon,2005,43(10):2175. 10 Cheng K K, Hsu T C, Kao L H. Carbon nanofibers prepared by a novel co-extrusion and melt-spinning of phenol formaldehyde-based core/sheath polymer blends[J].Journal of Materials Science,2011,46(6):1870. 11 Ono H, Oya A. Preparation of highly crystalline carbon nanofibers from pitch/polymer blend[J].Carbon,2006,44(4):682. 12 Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargea-ble sodium-ion batteries[J].Journal of Materials Chemistry A,2013,1(36):10662. 13 Yusof N, Ismail A F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review[J].Journal of Analytical & Applied Pyrolysis,2012,93:1. 14 Hu C C, Lin J Y. Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3[J].Electrochimica Acta,2002,47(25):4055. 15 Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J].Journal of Solid State Chemistry,1999,144(1):220. 16 Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution[J].Journal of Solid State Chemistry,1999,148(1):81. 17 Morita M, Goto M, Matsuda Y. Ethylene carbonate-based organic electrolytes for electric double layer capacitors[J].Journal of Applied Electrochemistry,1992,22(10):901. 18 Patil S, Mahajan J R, More M A, et al. Influence of supporting electrolyte on the electrochemical synthesis of poly(o-methoxyaniline) thin films[J].Materials Letters,1999,39(5):298. 19 Cheikh Z B, Kamel F E, Gallot-Lavallée O, et al. Hydrogen doped BaTiO3, films as solid-state electrolyte for micro-supercapacitor applications[J].Journal of Alloys & Compounds,2017,721:276. 20 Liu X, Osaka T. Properties of electric double-layer capacitors with various polymer gel electrolytes[J].Journal of the Electrochemical Society,1997,144(9):3066. 21 Ingram M D, Pappin A J, Delalande F, et al. Development of electrochemical capacitors incorporating processable polymer gel electrolytes[J].Electrochimica Acta,1998,43(10):1601. 22 Yang Hui, Zhang Milin, Chen Ye. Preparation and studies on the membrane material of supercapacitors[J].Applied Science and Technology,2006,33(7):51(in Chinese). 杨惠,张密林,陈野.超级电容器隔膜材料的制备与研究[J].应用科技,2006,33(7):51. 23 Liu Hao. Research of diaphragms and electrolyte for the super capa-citor[D].Changchun:Jilin University,2015(in Chinese). 刘浩.超级电容器隔膜与电解质的研究[D].长春:吉林大学,2015. 24 Chang J K, Lee M T, Tsai W T. In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J].Journal of Power Sources,2007,166(2):590. 25 Lai C C, Lo C T. Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors[J].Electrochimica Acta,2015,183:85. 26 Liu C, Tan Y, Liu Y, et al. Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor[J].Journal of Energy Chemistry,2016,25(4):587. 27 Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J].Electrochimica Acta,2016,196:189. 28 Kim C H, Kim B H. Zinc oxide/activated carbon nanofiber compo-sites for high-performance supercapacitor electrodes[J].Journal of Power Sources,2015,274:512. 29 Niu H, Zhang J, Xie Z, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J].Carbon,2011,49(7):2380. 30 Xue G, Zhong J, Cheng Y, et al. Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors[J].Electrochimica Acta,2016,215:29. 31 Xu Q, Yu X, Liang Q, et al. Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes[J].Journal of Electroanalytical Chemistry,2015,739:84. 32 Yan X, Liu Y, Fan X, et al. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors[J].Journal of Power Sources,2014,248:745. 33 Huang K, Yao Y, Yang X, et al. Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in bin-der-free supercapacitors[J].Materials Chemistry & Physics,2016,169:1. 34 Geim A K, Novoselov K S. The rise of graphene[J].Nature Mate-rials,2007,6(3):183. 35 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902. 36 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385. 37 Pumera M. Electrochemistry of graphene: New horizons for sensing and energy storage[J].The Chemical Record,2009,9(4):211. 38 Kim S Y, Yang K, Kim B H. Enhanced electrical capacitance of he-teroatom-decorated nanoporous carbon nanofiber composites containing graphene[J].Electrochimica Acta,2014,137(8):781. 39 Zhou Z, Wu X F. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization[J].Journal of Power Sources,2013,222(2):410. 40 Kim B H, Yang K S, Ferraris J P. Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors[J].Electrochimica Acta,2012,75(4):325. 41 Hsu H C, Wang C H, Chang Y C, et al. Graphene oxides and carbon nanotubes embedded in polyacrylonitrile-based carbon nanofibers used as electrodes for supercapacitor[J].Journal of Physics and Chemistry of Solids,2015,85:62. 42 Cheng Y, Huang L, Xiao X, et al. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode[J].Nano Energy,2015,15:66. 43 Jang J, Bae J, Choi M, et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J].Carbon,2005,43(13):2730. 44 Ju Y W, Choi G R, Jung H R, et al. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole[J].Electrochimica Acta,2008,53(19):5796. 45 Yao B, Yuan L, Xiao X, et al. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes[J].Nano Energy,2013,2(6):1071. 46 Zhang J, Chen P, Oh B H, et al. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly[J].Nanoscale,2013,5(20):9860. 47 Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystalli-nity[J].Advanced Functional Materials,2014,24(17):2489. 48 Yang C, Shen J, Wang C, et al. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes[J].Journal of Materials Chemistry A,2014,2(5):1458. 49 Ning P, Duan X, Ju X, et al. Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors[J].Electrochimica Acta,2016,210:754. 50 Lee D G, Kim J H, Kim B H. Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: Effect of poly(methyl methacrylate) concentration[J].Electrochimica Acta,2016,200:174. 51 Kim B H, Yang K S, Yang D J. Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-la-yer capacitors[J].Electrochimica Acta,2013,109(11):859. |
|
|
|