NEW MATERIAL AND TECHNOLOGY |
|
|
|
|
|
Electron Collector Materials for High-power Microwave Source: High-current Relativistic Electron Beam Bombardment-induced Physical Effects and Relevant Performance Requirements |
CHEN Bin, WAN Hong, HUA Ye
|
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 |
|
|
Abstract Collector of high-power microwave source is a key component which influences the stability and lifetime of the high-power microwave system. The physical effects rose from collector bombarded by high-current electron beam, such as secondary electrons, back scattered electrons, and Bremsstrahlung radiation, which consequently lead to quality decline of the generated microwave. The substantial temperature rise induced by continuous concentration of electron beam energy upon electron collector will result in invalidation or even structural failure of the collector. Moreover, high-current relativistic electron beam bombardment also causes material's partial evaporation and subsequently, pollution of the vacuum chamber. In this paper, the physical effects rose from the material bombarded by high-current electron beam are discussed, with which requirements for both properties and materials of collector for high-power microwave source are proposed.
|
Published: 10 April 2017
Online: 2018-05-08
|
|
|
|
1 Booske J H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high-power microwave generation[J]. Phys Plasmas,2008,15:055502. 2 Yang H W, et al. Trends and outlooks on heat dissipating perfor-mance of collector[J]. Vac Electron,2013(3):42(in Chinese). 杨华威, 等. 收集极散热性能研究发展现状[J]. 真空电子技术,2003(3):42. 3 Xun T, Yang H W, Zhang Z C, et al. Thermal characteristics of repetitively operated high-current beam collector[J]. High Power Laser Particle Beams,2011,23(11):3064 (in Chinese). 荀涛, 杨汉武, 张自成. 重复频率运行强流电子束收集极热特性[J]. 强激光与粒子束, 2011,23(11):3064. 4 Huo S F, Sun J, Chen C H, et al. Preliminary study on space density distribution of intense electron beam in foil less diode[J]. High Power Laser Particle Beams,2014,26(4):28(in Chinese). 霍少飞, 孙钧, 陈昌华, 等. 无箔二极管强流电子束空间密度分布初步研究[J]. 强激光与粒子束,2014,26(4):28. 5 秦颖, 董丽, 郝胜智, 等. 强流脉冲电子束材料表面改性的热力耦合[C]// 2010全国荷电粒子源、粒子束学术会议论文集. 大连,2010:148. 6 王培铭. 材料研究方法[M]. 北京: 科学出版社,2005:121. 7 赵玉清. 电子束离子束技术[M]. 西安: 西安交通大学出版社,2002:60. 8 Qin Y, Dong C, Wang X, et al. Temperature profile and crater formation induced in high-current pulsed electron beam processing[J]. J Vac Sci Technol A,2003,21(6):1934. 9 Li Q Y, Jiang Y K, Du S K, et al. Experiments on dynamic response of materials under pulsed heating[J]. Explos Shock Waves,1985,5(3):27(in Chinese). 李清源, 宋林西, 蒋垣昆, 等. 材料在脉冲加热下的动响应实验[J]. 爆炸与冲击,1985,5(3):27. 10 Peng C X, Lin P, Tang Y Z. Properties of energy deposition and thermal shock wave in material radiated by pulsed electron beam[J]. Chin J Comput Phys,2003,20(1):51(in Chinese). 彭常贤, 林鹏, 唐玉志. 电子束在材料中的能量沉积和热激波特性[J]. 计算物理, 2003, 20(1): 51. 11 Qin Y, Zou J, Dong C, et al. Temperature-stress fields and related phenomena induced by a high-current pulsed electron beam[J]. Nucl Inst Methods Phys Res B,2004,225(4):544. 12 Hao S, Wu P, Zou J, et al. Microstructure evolution occurring in the modified surface of 316L stainless steel under high-current pulsed electron beam treatment[J]. Appl Surf Sci,2007,253(12):5349. 13 Zhang K, Zou J, Grosdidier T, et al. Improved pitting corrosion resistance of AISI 316L stainless steel treated by high-current pulsed electron beam[J]. Surf Coat Technol,2006, 201(3-4):1393. 14 Zameroski N D, Kumar P, Christopher Watts, et al. Secondary electron yield measurements from materials with application to collectors of high-power microwave devices[J]. IEEE Trans Plasma Sci,2006,34(3):642. 15 Cohen A J, Koral K F. Backscattering and secondary-electron emission from metal targets of various thicknesses[J]. Forest Ecol Ma-nage,1965,124(1):255. 16 Archard G D. Backscattering of electrons[J]. J Appl Phys,1961,32(8):1505. 17 Bishop H E. Electron scattering in thick targets[J]. British J Appl Phys,2002,18(6):703. 18 Staub P F. Bulk target backscattering coefficient and energy distribution of 0.5-100 keV electrons: An empirical and synthetic study[J]. J Phys D: Appl Phys,1994,27(7):1533. 19 Insepov Z, Ivanov V, Frisch H. Comparison of candidate secondary electron emission materials[J]. Nucl Inst Methods Phys Res,2010,268(20):3315. 20 Seiler H. Secondary electron emission in the scanning electron microscope[J]. J Appl Phys,1983,54(11):R1. 21 Shih A, Yater J, Hor C, et al. Secondary electron emission studies[J]. Appl Surf Sci,1997, 111(2):251. 22 Kanaya K, Kawakatsu H. Secondary electron emission due to primary and backscattered electrons[J]. J Phys D: Appl Phys,2002,5(9):1727. 23 Gao M J, Zhang Y N, Xiao X, et al. Formula for secondary electron yield from metal Al at higher incident electron energy at different incident angle[J]. Vac Cryogen,2014(1):43(in Chinese). 高明杰, 张雅男, 肖雪, 等. 不同入射角度铝的较高能二次电子发射系数表达式[J]. 真空与低温,2014(1):43. 24 李星洪. 辐射防护基础[M]. 北京: 原子能出版社,1982:234. 25 Williams S, Hayton K, Quarles C A. Target thickness dependence of 50 keV electron bremsstrahlung[J]. Nucl Inst Methods Phys Res,2006,261(1-2):184. 26 施将君. 高能电子束轫致辐射照射率[J]. 爆轰波与冲击波,1991(1):17. 27 才鸿年, 赵宝荣. 金属材料手册[M]. 北京: 化学工业出版社,2010. 28 钱苗根. 现代表面工程[M]. 上海: 上海交通大学出版社,2012. 29 钦征骑, 钱杏南, 贺盘发. 新型陶瓷材料手册[M]. 南京: 江苏科学技术出版社,2005. 30 Bai G D, Ding M Q, Zhao Q P, et al. Technologic investigation of improving the efficiency of MDC by suppressing secondary electron emission[J]. Vac Electron,2009(5):22 (in Chinese). 白国栋, 丁明清, 赵青平, 等. 抑制行波管多级降压收集极二次电子发射的工艺研究[J]. 真空电子技术,2009(5):22. 31 Wang J M, Zhao Q, Wu H C. Study on the suppression of secondary electron emission for MDC electrodes[J]. J Funct Mater Devices,2012,18(1):5(in Chinese). 王加梅, 赵青, 武洪臣. 抑制多级降压收集极二次电子发射的研究进展[J]. 功能材料与器件学报,2012,18(1):5. 32 Chen J M, Liu X, Xiao Z X, et al.Thermal shock behavior of doped graphites tested by high energy laser beam and electron beam[J]. Chin J Nucl Sci Eng,2002,22(1):47(in Chinese). 谌继明, 刘 翔, 肖征贤, 等. 掺杂石墨在高能激光束和电子束作用下的热冲击行为[J].核科学与工程,2002,22(1):47. 33 赖剑强, 宫玉彬, 魏彦玉, 等. 收集极材料与角度相关的真二次电子发射系数与产量的研究[C]// 中国电子学会真空电子学分会第十七届学术年会暨军用微波管研讨会论文集. 宜昌,2009. 34 Khatun H, Bhattacharya R, Sharan S, et al. Design of single-stage depressed collector for 42 GHz, 200 kW gyrotron[J]. Vacuum,2012,86(10):1465. 35 Latha A M, Gahlaut V, Kaur J, et al. A novel geometry multi-stage depressed collector for the efficiency enhancement of space traveling wave tubes[J]. J Infrared Millimeter Terahertz Waves,2013,34(1):53. 36 Parson J, Dickens J, Walter J, et al. Gas evolution of nickel, stainless steel 316 and titanium anodes in vacuum sealed tubes[C] ∥Power Modulator and High Voltage Conference. UK, 2012. 37 Elfsberg M, Hurtig T, Larsson A, et al. Experimental studies of anode and cathode materials in a repetitive driven axial vircator[J]. IEEE Trans Plasma Sci,2008,1(3):688. 38 Roy A, Menon R, Mitra S, et al. Plasma expansion and fast gap closure in a high-power electron beam diode[J]. Phys Plasmas,2009,16(5):053103. 39 Shiffler D, Nation J A, Schachter L, et al. A high-power two stage traveling-wave tube amplifier[J]. J Appl Phys,1991,70(1):106.
|
No related articles found! |
|
|
|
|