REVIEW PAPER |
|
|
|
|
|
Review on Preparation and Application of High-entropy Alloy Coatings |
ZHAO Qin1,2, MA Guozheng2, WANG Haidou2, LI Guolu1,CHEN Shuying2, ZHOU Yangyang1
|
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130; 2 National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 |
|
|
Abstract High-entropy alloy coatings(HEACs), also known as multi-principal-element alloy coatings, are new kinds of alloy coatings which primarily composed by single BCC, FCC or HCP solid solution, and amorphous, nanocrystalline and nanocomposite can be easily obtained under the influence of high entropy effect. HEACs have excellent comprehensive mechanical properties, high temperature oxidation resistance, radiation resistance, biocompatibility and so forth, therefore they have high research value and great application prospects. The conception of HEACs are elaborated from two aspects, namely, the number of principal element and the value of configuration entropy of coatings. The advantage and disadvantage of thermal spray, laser cladding and physical vapor deposition process which are commonly used methods to prepare HEACs are analyzed and compared. The current application of HEACs in industry is introduced. Finally, the existing problems of the current research about HEACs are pointed out and the future development direction of HEACs is also proposed.
|
Published: 10 April 2017
Online: 2018-05-08
|
|
|
|
1 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater,2017,122(1):448. 2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv Eng Mater,2004,6(5):299. 3 Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Currentence,2003,85(10):1404. 4 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci Eng A, 2004,375-377(1):213. 5 Zhang Y, Zuo T T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability [J]. Scientific Reports,2013,3(6125):1335. 6 Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat Commun,2015,6:5964. 7 Lim X. Mixed-up metals make for stronger, tougher, stretchier alloys [J]. Nature,2016,533(7603):306. 8 Gludovatz B, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014,345(6201):1153. 9 Butler T M, Alfano J P, Martens R L, et al. High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys [J]. J Met,2014,67(1):1. 10 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat Commun,2015,6:6529. 11 Zhao Y J, Qiao J W, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater Des,2016, 96:10. 12 Dong Y, Gao X, et al. A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties [J]. Mater Lett, 2016,169:62. 13 Lu Y, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Scientific Reports,2014,4:6200. 14 Sui Yanwei, Chen Xiao, Qi Jiqiu, et al. Research progress of high-entropy alloys with multi-principal elements and its prospective application [J]. J Funct Mater,2016,47(5):50(in Chinese). 隋艳伟, 陈霄, 戚继球, 等. 多主元高熵合金的研究现状与应用展望[J]. 功能材料, 2016, 47(5):50. 15 Shi Wankai, Li Ning, et al. Research on tribological properties of sulfide layer produced by ion sulphurization [J]. J Chongqing University of Technology: Nat Sci,2015,29(9):48(in Chinese). 石万凯, 李宁, 等. 低温离子渗硫FeS涂层的摩擦学性能研究[J]. 重庆理工大学学报:自然科学版,2015, 29(9):48. 16 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv Eng Mater,2004,6(1-2):74. 17 Jiang L, et al. Microstructure evolution and wear behavior of the laser cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb high-entropy alloy coatings [J]. J Thermal Spray Technol,2016,25(4):806. 18 King D J M, Middleburgh S C, Mcgregor A G, et al. Predicting the formation and stability of single phase high-entropy alloys [J]. Acta Mater,2016,104:172. 19 Yeh J W, Lin S J, Tsai M H, et al. High-entropy alloys [M]. Berlin:Springer,2016:8. 20 Haupt P. Thermodynamics of solids [J]. Am J Phys,1962,30(10):778. 21 Gaskell D R. Introduction to the thermodynamics of materials [J]. J Am Ceram Soc,2008,56(7):355. 22 Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys [J]. Mater Trans, 2000,41(11):1372. 23 Murty B S, Yeh J W, Ranganathan S. High entropy alloys [M]. Amsterdam:Elsevier,2014:15. 24 Fultz B. Vibrational thermodynamics of materials [J]. Progress Mater Sci,2010,55(4):247. 25 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. J Miner Met Mater Soc,2013,65(12):1759. 26 Ma Zhuang, Wang Ni, et al. Progress in high-entropy alloy compo-site materials [J].Mater Rev: Rev,2015, 29(9):140(in Chinese). 马壮, 王倪, 等. 高熵合金基复合材料研究进展[J]. 材料导报:综述篇,2015,29(9):140. 27 Wang L M, Chen C C, et al. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys [J]. Mater Chem Phys,2011,126(3):880. 28 Ang A S M, Berndt C C, Sesso M L, et al. Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi [J]. Metall Mater Trans A,2015,46(2):791. 29 Ang A S M. Comparison of plasma sprayed high entropy alloys with conventional bond coat materials [C]//International Thermal Spray Conference and Exposition (ITSC),2015. 30 Zhang Mina, Zhou Xianglin, Yu Xiangnan, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coa-ting by laser cladding [J]. Surf Coat Technol,2017,311(15):321. 31 Ma Mingxing, Liu Yuanxun, Gu Yu, et al. Synthesis of AlxCoCrNiMo high entropy alloy coatings by laser cladding [J]. Appl Laser,2010,30(6):433(in Chinese). 马明星, 柳沅汛, 谷雨, 等 激光制备AlxCoCrNiMo高熵合金涂层的研究[J]. 应用激光,2010,30(6):433. 32 Huang C, Zhang Y, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate [J]. Mater Des,2012,41:338. 33 Liu Shida, Peng Cunyuan, Ma Mingxing, et al. Effect of Mn contents on the phase transition of the high entropy alloy prepared by laser cladding [J]. Mater Sci Forum,2016,849:64. 34 Dong Y, Zhou K, Lu Y, et al. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy [J]. Mater Des,2014,57(5):67. 35 Huang Zufeng, Zhang Chong, Tang Qunhua, et al. Effects of WC particles on the microstructure and hardness of FeCoCrNiCu high-entropy alloy coating prepared by laser cladding [J]. China Surf Eng,2013,26(1):13(in Chinese). 黄祖凤, 张冲, 唐群华, 等. WC颗粒对激光熔覆FeCoCrNiCu高熵合金涂层组织与硬度的影响[J]. 中国表面工程,2013, 26(1):13. 36 Ocelík V, Janssen N, Smith S N, et al. Additive manufacturing of high-entropy alloys by laser processing [J]. J Miner Met Mater Soc,2016,68(7):1810. 37 石玉龙,闫凤英.薄膜技术与薄膜材料[M]. 北京:化学工业出版社,2015. 38 Cai Minghong. Microstructure and electrical property variation of high-entropy alloy films [D]. Hsinchu: National Tsinghua University,2002(in Chinese). 蔡铭洪. 多元高熵合金薄膜微结构及电性演变之研究[D]. 新竹:新竹清华大学,2002. 39 Alexander Pogrebnjak, et al. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings [J]. J Alloys Compd,2016,DOI:10.1016/j.ja∥com.21016,04,064. 40 Pogrebnjak A D, Yakushchenko I V, Bagdasaryan A A, et al. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions [J]. Mater Chem Phys,2014,147(3):1079. 41 Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings [J]. Surf Coat Technol,2012,211(42):117. 42 Braic V, Balaceanu M, Braic M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J Mechan Behavior Biomed Mater,2012,10(10):197. 43 Braic V, Parau A C, et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCu-NbTiY)C multicomponent coatings[J]. Surf Coat Technol,2014,258:996. 44 Shen W J, Tsai M H, Yeh J W. Machining performance of sputter-deposited(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings [J]. Coatings,2015,5(3):312. 45 Shen W J, Tsai M H, Chang Y S, et al. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)N x coatings [J]. Thin Solid Films,2012,520(19):6183. 46 Shen W J, Tsai M H, Tsai K Y, et al. Superior oxidation resis-tance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-eentropy nitride [J]. J Electrochem Soc,2013,160(11):C531. 47 Lv C F, et al. Structure and mechanical pro-perties of a-C/(AlCrWTaTiNb)CxNy composite films [J]. Surf Eng,2016,32(7):1. 48 Tsai D C, Deng M J, Chang Z C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)SixN coating deposited via magnetron sputtering [J]. J Alloys Compd,2015,647:179. 49 Cheng K H, Tsai C W, et al. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)SixN coatings by reactive RF magnetron sputtering [J]. J Phys D,2011,44(20):7. 50 Cheng C Y, Yeh J W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J]. Mater Lett,2016,185:456. 51 Yue T M, Xie H, Lin X, et al. Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying [J]. Entropy,2013,15(7):2833. 52 Shang C, Axinte E, Sun J, et al. CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater Des,2017,117:193. 53 Huang P K, Yeh J W. On high-entropy alloy and nitride coatings sputtered from AlCrNbSiTiV target [D]. Hsinchu: National Tsinghua University,2009. 54 And A E K, Eisenbraun E. Ultrathin diffusion barriers/liners for gigascale copper metallization [J]. Annual Rev Mater Res,2000, 30(1):363. 55 Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys: A comparison with type 304 stainless steel [J]. Corros Sci,2005,47(9):2257. 56 Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon [J]. Thin Solid Films,2008,516(16):5527. 57 Chen D S, et al. Multiprincipal element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization [J]. Ecs Trans,2009,19(2):G37. 58 Chang S Y, et al. Improved diffusion-resistant ability of multicomponent nitrides: From unitary TiN to senary high-entropy (TiTaCrZrAlRu)N [J]. J Miner Met Mater Soc,2013,65(12):1790. 59 Chang S Y, Li C E, Huang Y C, et al. Structural and thermodyna-mic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials [J]. Sci R,2014,4(2):4162. 60 Chang S Y, Li C E, Chiang S C, et al. 4-nm thick multilayer structure of multi-component(AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J]. J Alloys Compd,2012,515(9):4. 61 Nagase T, Rack P D, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy(HEA)under fast electron irradiation by high voltage electron microscopy(HVEM) [J]. Intermetallics,2015,59:32. 62 Chen S H. The mechanical properties and microstructures of the(CrNbTaTiZr)Cx coating [D]. Hsinchu: National Tsinghua University,2012(in Chinese). 陈思寰. (CrNbTaTiZr)Cx薄膜的机械性质与微结构之研究[D]. 新竹:新竹清华大学,2012. |
|
|
|