RESEARCH PAPER |
|
|
|
|
|
Study on Effect of Block Copolymer PS-b-PMMA on Compatibility of PCHMA/ PMMA Blends: Influences of Block Ratio, Molecular Weight and Viscosity |
YE Shenjie1, YU Feng1, WANG Keqiang1, WANG Wenjin1, CHEN Zhongren1,2
|
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211; 2 Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055 |
|
|
Abstract Melt-mixed method was used to compatibilize poly(cyclohexyl methacrylate) (PCHMA) and poly (methyl methacrylate) (PMMA) binary blends by adding diblock copolymer polystyrene-b-poly (methyl methacrylate) (PS-b-PMMA). Effects of block ratio of PS-b-PMMA, molecular weight (MW) of each homopolymer component,and viscosity of the blend on its compatibility were discussed. We found that the asymmetric block copolymers (BCPs) tend to form micelles and reduce the compatibilization efficiency, rather than the symmetric BCPs. A higher MW leads to an increased amount of BCP micelles. Specifically, increasing the MW of dispersed phase (PMMA) destabilizes the interface, enhances the BCP diffusion into the PMMA phase and forms a larger amount of micelles. On the other hand, increasing the MW of matrix (PCHMA) leads to the increase of phase viscosity, suppresses swelling and external emulsification of the micelle PS block, reduces the micelle migration and keeps the BCP micelles detented inside the PCHMA phase. Therefore, the compatibilization efficiency can be controlled by manipulating the MW of homopolymer component, BCP symmetry and shear viscosity. Finally, the results were interpreted by the Leibler wet-dry brush theory, enthalpy-driven swelling of a polymer brush and Stokes- Einstein diffusion theory.
|
Published: 25 February 2017
Online: 2018-05-02
|
|
|
|
1 Koning C, Duin M V, Pagnoulle C, et al. Strategies for compatibilization of polymer blends[J]. Prog Polym Sci,1998,23(4):707. 2 Macosko C W, Guegan P, Khandpur A K, et al. Compatibilizers for melt blending: Premade block copolymers[J]. Macromolecules,1996,29(17):5590. 3 Jeon H K, Zhang J, Macosko C W. Premade vs. reactively formed compatibilizers for PMMA/PS melt blends[J]. Polymer,2005,46(26):12422. 4 Dorel Feldman. Polyblend compatibilization[J]. J Macromol Sci Part A,2005,42(5):587. 5 Zhang Guoying, Wu Qiang, Wang Weizhi. Compatibilizing effect of copolymers in polymer blends I. block copolymers[J]. Chin Polym Bull,2003(2):37(in Chinese). 张国颖, 吴强, 汪伟志. 共聚物在聚合物共混体系中的增容作用I.嵌段共聚物[J]. 高分子通报,2003(2):37. 6 Wang Jian, Lu Yuyuan, Xu Yuci, et al. Effects of block copolymer compatibilizers on phase behavior and interfacial properties of incompatible homopolymer composites[J]. Acta Polym Sin,2016(3):271(in Chinese). 王健, 卢宇源, 徐玉赐,等. 嵌段共聚物增容剂对不相容均聚物共混体系相行为和界面性质的影响[J]. 高分子学报,2016(3):271. 7 Adeyinka Adedeji, Suping Lyu A, Macosko C W. Block copolymers in homopolymer blends: Interface vs micelles[J]. Macromolecules,2001,34(25):8663. 8 Zhong Shuo, Wang Chao, Weng Gengsheng, et al. Effect of LIR-390 on structure and properties of natural rubber and butadiene rubber[J]. Mater Rev,2015,29(S1):267(in Chinese). 钟硕, 王超, 翁更生,等. 液体异戊二烯-丁二烯共聚物对天然橡胶、顺丁橡胶结构与性能的影响[J]. 材料导报,2015,29(专辑25):267. 9 Huang C, Yu W. Role of block copolymer on the coarsening of morphology in polymer blend: Effect of micelles[J]. Aiche J,2015,61(1):285. 10 Jakubowski W, Matyjaszewski K. Activator generated by electron transfer for atom transfer radical polymerization[J]. Macromolecules,2005,38(10):4139. 11 Leibler L. Block copolymers at interfaces[J]. Physica A,1991,172(1):258. 12 Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends[J]. Macromol Symp,1988,16(1):1. 13 Fredrickson G H, Bates F S. Design of bicontinuous polymeric microemulsions[J]. J Polym Sci Part B,1997,35(35):2775. 14 Janert P K, Schick M. Phase behavior of ternary homopolymer/diblock blends: Influence of relative chain lengths[J]. Macromolecules,1997,30(1):137. 15 Politakos N, Ntoukas E, Avgeropoulos A, et al. Physical properties of polymers handbook[M]. New York:Springer,2007. 16 Politakos N, Ntoukas E, Avgeropoulos A, et al. Strongly segregated cubic microdomain morphology consistent with the double gyroid phase in high molecular weight diblock copolymers of polystyrene and poly(dimethylsiloxane)[J]. J Polym Sci Part B,2009,47(23):2419. 17 Adedeji A, Hudson S D, Jamieson A M. Enthalpy-enhanced microphase separation in homopolymer/block copolymer blends[J]. Polymer,1997,38(3):737. 18 Brown H R, Char K, Deline V R. Enthalpy-driven swelling of a polymer brush[J]. Macromolecules,1990,23(13):3383. 19 Friedrich C, Schwarzwälder C, Riemann R E. Rheological and thermodynamic study of the miscible blend polystyrene/poly(cyclohexyl methacrylate)[J]. Polymer,1996,37(12):2499. 20 Kim J R, Hudson S D, Jamieson A M, et al. Influence of segmental swelling of a symmetric block copolymer on the morphology of melt-mixed immiscible polymer blends[J]. Macromolecules,1999,32(14):4582. 21 Bird R B, Stewart W E, Lightfoot E N, et al. Transport phenomena[M].New York: John Wiley & Sons,1960. 22 Atkins P W. Physical chemistry[J].3rd ed.New York: Freeman,1986. |
|
|
|