REVIEW PAPER |
|
|
|
|
|
Progress of Schottky Contact Model and Carrier Transport Mechanism at the Interface Between Metal and Semiconductor |
LI Yapeng1, LI Yingfeng2, HE Zhirong1, GUO Congsheng1, YAN Qunmin2, XU Feng1
|
1 School of Materials Science and Engineering, Shaanxi Sci-Tech University, Hanzhong 723001; 2 School of Electrical Engineering, Shaanxi Sci-Tech University, Hanzhong 723001; |
|
|
Abstract Schottky contact was an important application in the field of the rectifier and photoelectric detection, due to its excellent rectifying behavior. In this paper, the formation mechanism, together with corresponding mathematical model and influencing factors of the Schottky contact between metal and semiconductor was reviewed in detail. The literatures showed that the formation of Schottky contact was caused by Fermi level pinning which was caused by phase formation and the existence of polarization at the interface region. Meanwhile, the thermionic emission model was the most widely used to explain the carrier transport mechanism at the interface of Schottky contact. With the further study on the carrier transport mechanism at the interface contact, the thermio-nic-diffusion and thermal field emission model were proposed by researchers. In addition, the related research exhibited that the fast annealing can lead to atoms diffusion, rearrangement and phase formation at the interface of the Schottky contact, which has an important influence on the stability of Schottky contact.
|
Published: 10 February 2017
Online: 2018-05-02
|
|
|
|
1 Sze S M. Physics of semiconductor devices[M]. New York: Wiley,1981. 2 Schottky W. Halbleitertheorie der sperrschicht[J]. Die Naturwissenschaften,1938,52(26):843. 3 Mott N F. Note on the contact between a metal and an insulator or semiconductor[J]. Mathemat Proceed Cambridge Philosoph Soc,1938,34:568. 4 Bardeen J. Surface states and rectification at a metal-semiconductor contact[J]. Phys Rev,1947,71:717. 5 Cowley A M, Sze S M. Surface states and barrier height of metal-semiconductor systems[J]. J Appl Phys,1965,36(10):3212. 6 Freeouf J L, Woodall J M. Schotty barriers: An effective work function model[J]. Appl Phys Lett,1981,39(9):727. 7 Tung R T. Chemical bonding and Fermi level pinning at metal-semiconductor interface[J]. Phys Rev Lett,2000,84:6078. 8 Tung R T. Recent advance in schottky barrier concepts[J]. Mater Sci Eng R Reports,2001,35(1-3):1. 9 Sharma B L.Metal-semiconductor Schottky barrier junctions and their applications[M]. New York: Plenum,1984:191. 10 Resfa A, Smahi B Y, Menezla B R. Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator[J]. J Semiconductors,2011,32(12):58. 11 Rhoderick E H. Metal-semiconductor contacts[M].Oxford: Oxford University Press,1978. 12 Heine V. Theory of surface states[J]. Phys Rev A,1965,138(6):1689. 13 Tersoff J. Schottky barrier heights and the continuum of gap states[J]. Phys Rev Lett,1984,52:465. 14 Friedman D J, Lindau, Spicer W E. Noble-metal-CdTe interface formation[J] Phys Rev B,1988,37:731. 15 Tung R T. Electron transport at metal-semiconductor interfaces: General theory [J]. Phys Rev B,1992,45(23):13509. 16 Haruhiro O, Jia F F, Yasuo N, et al. Universal passivation effect of (NH4)2Sx treatment on the surface of Ⅲ-Ⅴ compound semiconductors[J]. Japanese J Appl Phys,1991,30:322. 17 Thomson R D, Tu K N. Schottky barrier of non-uniform contacts to n-typy and p-type silicon[J]. J Appl Phys,1982,53(6):4285. 18 Adachi S. Handbook on physical properties of semiconductor volume 2: Ⅲ-Ⅴ compound semiconductors [M].Boston: Kluwer Academic,2004. 19 Maffeis T G G, Simmonds M C, Clark S A, et al. Near ideal, high barrier, Au-nGaN Schottky contacts [J]. J Phys D,2000,33(20):115. 20 Zaremba G, Adamus Z, Jung W, et al. The role of deep level traps in barrier height of 4H-SiC Schottky diode[J]. Mater Sci Eng B,2012,177(15):1323. 21 Mênch W. Role of virtual gap states and defects in metal-semiconductor contacts [J]. Phys Rev Lett,1987,58(12):1260. 22 Wahi A K, Miyano K, Carey G P, et al. Band bending at Al, In, Ag, and Pt interfaces with CdTe and ZnTe (110)[J]. J Vacuum Sci,1990,8(3):1926. 23 Schaeffer J K, Samavedam S B, Liang Y, et al. Contributions to the effective work function of platinum on hafnium dioxide[J]. Appl Phys Lett,2004,85(10):1826. 24 Bai X X, Jie W Q, Zha G Q, et al. Interface dipole and Schotty bar-rier formation at Au/CdZnTe(111)A interfaces[J]. J Phys Chem C,2010,114:16426. 25 Chand S. On the intersecting behaviour of current-voltage characteri-stics of inhomogeneous Schottky diodes at low temperatures[J] . Semiconductor Sci Technol,2004,19(1):82. 26 Oyama S, Hashizume T, Hasegawa H. Mechanism of current lea-kage through metal/n-GaN interfaces[J]. Appl Surf Sci,2002,190(1-4):322. 27 Kolkovsky V, Scheffler L, Hieckmann E, et al. Schottky contacts on differently grown n-type ZnO single crystals[J]. Appl Phys Lett,2011,98:082104-1. 28 Liu Z Y, Saulys D A, Kuech T F. Improved characteristics for Au/n-GaSb Schottky contacts through the use of a nonaqueous sulfide-based passivation[J]. Appl Phys Lett,2004,85(19):4391. 29 Shao Z G, Chen D J, Liu B, et al. Current transport mechanisms of InGaN metal-insulator-semiconductor photodetectors[J]. J Vacuum Sci,2011,29(5):051201-3. 30 Yu A Y C. Electron tunneling and contact resistance of metal silicon contact barriers[J]. Solid State Electron,1970(13):239. 31 Padovani F A.Semiconductors and semimetals[M]. New York: Aca-demic Press,1971. 32 Janardhanam V,Park Y K,Ahn K S, et al. Carrier transport mecha-nism of Se/n-type Si Schottky diodes[J]. J Alloys Compd,2012,534:37. 33 Faraz S M, Willander M, Wahab Q. Interface state density distribution in Au/n-ZnO nanorods Schottky diodes[J]. IOP Conference Series Mater Sci Eng,2012,34(1):12006. 34 Brillson L J, Dong Y F, Tuomisto F, et al. Interplay of native point defects with ZnO Schottky barriers and doping[J]. J Vacuum Sci,2012,30(5):050801. 35 Song S, Kim D H, Kang D, et al. Electrical characteristics of schottky contacts to p-type (001) GaP: Understanding of carrier transport mechanism[J]. J Electron Mater,2016(10):1. 36 Bethe H A. Theory of boundary layer of crystal rectifiers[J]. MIT Radiation Lab Rep,1942,DOI:10.114219789814503464-0049. 37 Gurumurthy S,Bhat H L,Kumar V. Excellent rectifying characteristics in Au/n-CdTe diodes upon exposure to rf nitrogen plasma[J]. Semiconductor Sci Technol,1999,14(10):909. 38 Van Merihaeghe R L, Van de walle, Laflère W H, et al. On the relationship between the surface composition of the substrate and the Schottky barrier height in Au/n-CdTe contacts[J]. J Appl Phys,1991,70(4):2200. 39 Mathew X, Pantoja Enriquez J, Sebastian P J, et al. Charge transport mechanism in a typical Au/CdTe Schottky diode[J]. Solar Energy Mater Solar Cells,2000,63(4):355. 40 Card H C, Rhoderick E H. Studies of tunnel MOS diodes Ⅰ. Interface effects in silicon Schottky diodes[J]. J Phys D,1971,10(4):1589. 41 Singh A, Reinhardt K C, Anderson W A. Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions[J]. J Appl Phys,1990,68(7):3475. 42 Wang W P, Davidson J L, Gurbuz Y, et al. Temperature depen-dence and effect of series resistance on the electrical characteristics of a polycrystalline diamond metal-insulator-semiconductor diode[J]. J Appl Phys,1995,78(2):1101. 43 Divigalpitiya W M R. Temperature dependence of the photovoltaic characteristics of silicon MIS solar cells[J]. Solar Energy Mater,1989,18(5):253. 44 Cova P, Singh A. Temperature dependence of I-V and C-V characteristics of Ni/nCdF2 Schottky barrier type diodes[J]. Solid-State Electronics,1990,33(1):11. 45 Gülnahar M, Efeogˇlu H. Double barrier nature of Au/p-GaTe Schottky contact: Linearization of Richardson plot[J]. Solid-State Electroncs,2009,53:972. 46 Chattopadhyay P, Daw A N. On the current transport mechanism in a metal-insulator-semiconductor (MIS) diode[J]. Solid-State Electroncs,1986,29:555. 47 Hatori K, Torn Y. A new method to fabricate Au/n-type InP Schottky contacts with an interfacial layer[J]. Solid-State Electroncs,1991,34(5):527. 48 Dokme I, Altindal S. Temperature-dependent current-voltage chara-cteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height[J]. Semiconductor Sci Technol,2006,21:1053. 49 Chin V W L, Green M A V, Storey J W. Current transport mechanisms studied by I-V-T and IR photoemission measurements on a P doped Pt/Si Schottky diode[J]. Solid State Electroncs,1993,36(1):1107. 50 Jang J S, Donghwan K, Seong T Y. Schottyky barrier characteristics of Pt contacts to n-type InGaN[J]. J Appl Phys,2006,99(7):136. 51 Ayyildiz E, Cetin H, Horváth Zs J. Temperature dependent electrical characteristics of Sn/P-Si schottky diodes [J]. Appl Surf Sci,2005,252:1153. 52 Sullivan J P, Tung R T, Pinto M R, et al. Electron transport of inhomogeneous Schottky barriers: A numerical study[J]. J Appl Phys,1991,70(12):7403. 53 Fowell A E, Williams R H, Richardson B E, et al. The Au/CdTe interface: An investigation of electrical barriers by ballistic electron emission microscopy[J]. Semiconductor Sci Technol,1990,5(4):348. 54 Chen Z T, Fujita K, Ichikawa J, et al. Schottky barrier height inhomogeneity-induced deviation from near-ideal Pd/InAlN schottky contact[J]. IEEE Electron Device Lett,2011,32(5):620. 55 Werner J H. Gttler H H. Barrier inhomogeneities at Schottky contacts[J] . J Appl Phys,1991,69(3):1522. |
|
|
|