1ST CONFERENCE ON RESEARCH AND APPLICATION OF ADVANCED CEMENTITIOUS MATERIALS |
|
|
|
|
|
Influence of the Freeze-Thaw Cycle and Chlorine Salt Erosion Coupling Conditions on Frost-resistance of Polymer-modified Rapid Hardening Concrete |
NAN Xueli1, 2, WANG Chaojie1, 2, LIU Jinxin1, 2, HAN Bo1, 2, YANG Lanlan1, 2
|
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology,Lanzhou 730050; 2 School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 |
|
|
Abstract The use of deicing salt in the winter of northern China can seriously affect the durability of concrete for bridge deck overlays. In order to solve this problem, the law of freezing-thawing damage development under different situation has been studied. Rapid hardening sulphoaluminate cement(SAC), polymer-modified fast-hardening cement(JS) and ordinary Portland cement(P.O) were placed in NaCl solution with mass concentration of 0% and 3.5% to conduct fast freeze-thaw cycles experiment. Besides, with the help of SEM, the internal damage mechanism of different kinds of concrete under water and salt freezing environment were analyzed. Results showed that compared with the concrete in salt freezing situation, the sample in water freezing si-tuation did not show apparent mass loss, which meant that the freezing-thawing damage rate was slow and the damage was in a low degree. The antifreeze characteristic sequence of concrete both in two situations is P.O>JS>SAC. In salt freezing situation, more Fridel salt was yielded as corrosion products, which aggravated the collapsing of concrete.
|
Published: 10 December 2017
Online: 2018-05-08
|
|
|
|
1 Powers T C, Helmuth R A. Theory of volume changes in hardened portland cement paste during freezing[J]. Highway Res Board Proceedings, 1953, 32:285. 2 Yang Quanbing. Mechanisms of deicer-frost scaling of concrete(Ⅰ)——Capillary-uptake degree of saturation and ice-formation pressure[J]. J Building Mater, 2007, 10(5):522(in Chinese). 杨全兵. 混凝土盐冻破坏机理(Ⅰ)——毛细管饱水度和结冰压[J]. 建筑材料学报, 2007, 10(5):522. 3 Yang W. Study on test and evaluation methods of frost-resistance and chloride ion diffusion of concrete in a marine environment[J]. Mater Rev, 2008, 22(12):74(in Chinese). 杨文武, 钱觉时, 黄煜镔. 海洋环境下混凝土抗冻性和氯离子扩散性的实验与评价方法研究[J]. 材料导报, 2008, 22(12):74. 4 Setzer M J. The micro ice lens model of frost attack-basics and consequences for testing and application[C]∥The 5th International SymPosium on Cement and Conrete. Shanghai,2002:105. 5 Hong J X, Miao C W, Huang W. Damage caused by freeze-thaw cycles influencing on chloride diffusion of concrete[J]. Concrete, 2006(1):36(in Chinese). 洪锦祥, 缪昌文, 黄卫. 冻融损伤对混凝土氯离子扩散性能的影响 [J]. 混凝土, 2006(1):36. 6 Zhu F Z, Zhao T J, Zhang W D. Research progress on the concrete durability under combined action of freeze-thaw and other factors[J]. Mater Rev:Rev, 2011, 25(10):143(in Chinese). 朱方之, 赵铁军, 张卫东. 冻融和其它因素复合下混凝土的耐久性研究进展[J]. 材料导报:综述篇, 2011, 25(10):143. 7 Gifford P M, Gillott J E. Freeze-thaw durability of activated blast furnace slag cement concrete[J]. ACI Mater J, 1996, 93(3):242. 8 Marchand J, Pigeon M, Bager D, et al. Influence of chloride solution concentration on deicer salt scaling deterioration of concrete[J]. ACI Mater J, 1999, 96(4):429. 9 Yang Q R, Guo B L, Yang Q B. Research and application of air-entrained concrete to prestressed box girder of Qingdao bay bridge[J]. Highway, 2009(9):145(in Chinese). 杨钱荣, 郭保林, 杨全兵. 引气混凝土在青岛海湾大桥工程预应力桥梁中的应用研究[J]. 公路, 2009(9):145. 10 Wang J L, Shen L T, Niu K M. Influencing factors of deicer-salt resistance of pavement cement concrete[J]. J Highway Transportation Res Development, 2013, 30(10):1(in Chinese). 王稷良, 申力涛, 牛开民. 路面水泥混凝土抗盐冻性能的影响因素 [J]. 公路交通科技, 2013, 30(10):1. 11 Yang W W, Qian J S, Huang Y B. Frost resistance and chloride ion diffusion of silica-fume concrete in a marine environment[J]. J Chongqing University, 2009, 32(2):158(in Chinese). 杨文武, 钱觉时, 黄煜镔. 海洋环境下硅灰混凝土的抗冻性与氯离子扩散性[J]. 重庆大学学报, 2009, 32(2):158. 12 Zhang Y Q. Durability and service life design of RC members exposed to chloride salt-frost damage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(in Chinese). 张云清. 氯化物盐冻作用下混凝土构件的耐久性评估与服役寿命设计方法[D]. 南京:南京航空航天大学, 2011. 13 Yoshihiko Ohama. Handbook of polymer-modified concrete and mortars[M]. USA: Noyes publications, 1995:77. 14 Li Z L, Liang N X. Influence of SBR polymer on cement hydration and hardening[J]. J Building Mater, 1999, 2(1):6(in Chinese). 李祝龙, 梁乃兴. 丁苯类聚合物乳液对水泥水化硬化的影响[J].建筑材料学报, 1999, 2(1):6. 15 Xiong J, Shen A. Functional mechanism of the polymer cement concrete[J]. J Zhengzhou University(Engineering Science), 2006, 27(3):15(in Chinese). 熊剑平, 申爱琴. 聚合物水泥混凝土改性机理研究[J]. 郑州大学学报(工学版), 2006, 27(3):15. 16 Nan X L, Shao K M, Yang L L, et al. Influence of polymer additive amount on frost-resistance of polymer-modified fast-hardening cement mortars[J]. J Lanzhou University of Technology, 2016, 42(6):134(in Chinese). 南雪丽, 邵楷模, 杨兰兰, 等. 聚合物掺量对聚合物快硬水泥砂浆抗冻性的影响[J]. 兰州理工大学学报, 2016, 42(6):134. 17 Zhang Y F, Zhang D C, Zhang M, et al. Hydration performance of sulphoaluminate cement mixed with blending material[J]. J Jinan University (Science and Technology), 2006, 20(4):292(in Chinese). 张云飞, 张德成, 张鸣, 等. 掺合料对硫铝酸盐水泥性能的影响 [J]. 济南大学学报(自然科学版), 2006, 20(4):292. 18 Browne F P, Cady P D. Deicing scaling mechanism in concrete[J]. Special Publication, 1975, 47:101. |
|
|
|