New Material and Technology |
|
|
|
|
|
Progress in Metamaterial Absorber Based on Lumped Elements |
SONG Jian, LI Minhua, DONG Jianfeng
|
College of Information Science and Engineering,Ningbo University,Ningbo 315211 |
|
|
Abstract Lumped elements-loaded electromagnetic metamaterial absorbers constructed by sub-wavelength structures, have aroused a surge of interest because of their unique advantages such as thin thickness, strong absorption, resonant frequency(or bandwidth) tunability and easy integration. This paper introduces the latest research progress of metamaterials absorber based on lumped elements at home and abroad, and classifies them according to the types of lumped components, together with different absorbing mechanisms. This kind of reconfigurable metamaterial absorbers have a wide application value in energy harvesting, signal source detection, (5G communication) electromagnetic compatibility, MINO antenna, ship stealth and so forth.
|
Published: 10 November 2017
Online: 2018-05-08
|
|
|
|
1 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77. 2 Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys Rev Lett, 1996,76(25):4773. 3 Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory Techniques, 1999,47(11):2075. 4 Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000,85(18):3966. 5 Rosenblatt G, Orenstein M. Perfect lensing by a single interface: Defying loss and bandwidth limitations of metamaterials[J]. Phys Rev Lett, 2015, 115(19):195504. 6 Bhardwaj A, Ramakrishna S A. Focusing properties of a spherical perfect lens with eccentric deformations[J]. J Optical Soc Am B, 2016, 33(9):2000. 7 Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912):366. 8 Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nat Comm, 2010, 1(3):21. 9 Yu X, Gao X, Qiao W, et al. Broadband tunable polarization converter realized by graphene-based metamaterial[J]. IEEE Photonics Technol Lett, 2016, 28(21):2399. 10Tassin P. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting[J]. Appl Phys Lett, 2017, 110(8):143904. 11Karaaslan M, Bagmancl M, Unal E, et al. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications[J]. Optics Comm, 2017, 392:31. 12Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20):207402. 13Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Appl Phys Lett, 2009, 95(24):207402. 14Li M, Yang H L, Hou X W, et al. Perfect metamaterial absorber with dual bands[J]. Progress Electromagn Res, 2010,108:37. 15Tao H, Bingham C M, Pilon D, et al. A dual band terahertz metamaterial absorber[J]. J Phys D: Appl Phys, 2010,43(22):225102. 16Li H, Ma H F, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J].Optics Express, 2011, 19(10):9401. 17Xu H X, Wang G M, Qi M Q, et al. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber[J]. Phys Rev B, 2012, 86(20):3368. 18Dickie R, Cahill R, Gamble H S, et al. Spatial demultiplexing in the submillimeter wave band using multilayer free-standing frequency selective surfaces[J]. IEEE Transactions Antennas Propagation, 2005, 53(6):1904. 19Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber[J]. Appl Phys Lett, 2011, 100(10):103506. 20Mias C, Yap J H. A Varactor-tunable high impedance surface with a resistive-lumped-element biasing grid[J]. IEEE Transactions Antennas Propagation, 2007, 55(7):1955. 21Gu C, Qu S B, Pei Z B, et al. Planar metamaterial absorber based on lumped elements[J]. Chin Phys Lett,2010,11:185. 22Cheng Y Z, Wang Y, Nie Y, et al. Design, fabrication and mea-surement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. J Appl Phys, 2012, 111(4):509. 23Zhu B, Feng Y, Zhao J, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Appl Phys Lett, 2010, 97(5):051906. 24Luo Z, Long J, Chen X, et al. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors[J]. Appl Phys Lett, 2016, 109(7):1516. 25Liu L G, Li Y Q, Meng Q Z, et al. Design of an invisible radome by frequency selective surfaces loaded with lumped resistors[J]. Chin Phys Lett, 2013, 30(6):64101. 26Zhao M, Yu X, Wang Q, et al. Novel absorber based on pixelated frequency selective surface using estimation of distribution algorithm[J]. IEEE Antennas Wireless Propagation Lett, 2015, 14:1467. 27Ghosh S, Bhattacharyya S, Srivastava K V. Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber[J]. IET Microwaves Antennas Propagation, 2016, 10(8):850. 28Yang G H, Liu X X, Lv Y L, et al. Broadband polarization-insensitive absorber based on gradient structure metamaterial[J]. J Appl Phys, 2014, 115(17):1324. 29Lee H M, Lee H S. Resonant mode behavior of lumped-resistor-loaded electric-inductive-capacitive resonator and its absorber application[J]. AIP Adv, 2013, 3(5):041109-R. 30Zhang D, Cao X Y, Zhang W Q, et al. Design and application of wave-absorbing split ring resonator[J]. J Microwaves,2016(s1):67(in Chinese). 张迪, 曹祥玉, 张武岐, 等. 吸波型开口谐振环设计与应用研究[J]. 微波学报, 2016(s1):67. 31Li S, Gao J, Cao X, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. J Appl Phys, 2014, 116(4):207402. 32Munaga P, Ghosh S, Bhattacharyya S, et al. A fractal-based compact broadband polarization insensitive metamaterial absorber using lumped resistors[J]. Microwave Optical Technol Lett, 2016,58(2):343. 33陈强, 陈亮, 白佳俊, 等. 一种宽带小型化超材料吸波体设计[C] ∥2015年全国微波毫米波会议论文集. 合肥, 2015: 1579. 34Khuyen B X, Tung B S, Yoo Y J, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band[J]. Sci Rep, 2017, 7:45151. 35Yoo Y J, Zheng H Y, Kim Y J, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell[J]. Appl Phys Lett, 2014, 105(4):1353. 36Liu L Y, Zhang Z J, L L X. Research on broadband metamaterial absorber based on lumped resistance[J]. J Microwaves, 2016,32(5):50(in Chinese). 刘凌云, 张政军, 刘力鑫. 基于集总电阻的宽频带超材料吸波器研究[J]. 微波学报, 2016,32(5):50. 37Langley R J, Parker E A. Equivalent circuit model for arrays of square loops[J]. Electron Lett, 1982,18(7):294. 38Costa F, Monorchio A, Manara G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model[J]. IEEE Antennas Propagation Magazine, 2012,54(4):35. 39Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impe-dance surfaces[J]. IEEE Transactions Antennas Propagation, 2010,58(5):1551. 40Zhao J, Cheng Y. Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors[J]. J Electron Mater, 2016, 45(10):5033. 41Shi Y, Li Y C, Hao T, et al. A design of ultra-broadband metamaterial absorber[J]. Waves Random Complex Media, 2017,27(2):381. 42Gu S, Barrett J P, Hand T H, et al. A broadband low-reflection metamaterial absorber[J]. J Appl Phys, 2010, 108(6):064913. 43Gu C, Qu S B, Pei Z B, et al. Design of a wide-band metamaterial absorber based on loaded magnetic resonators[J]. Acta Phys Sin, 2011, 60(8):656(in Chinese). 顾超, 屈绍波, 裴志斌,等. 基于磁谐振器加载的宽频带超材料吸波体的设计[J]. 物理学报, 2011, 60(8):656. 44Chen Q, Jiang J J, Xu X X, et al. Thin and broadband electromagnetic absorber design using resistors and capacitors loaded frequency selective surface[J]. J Electromagn Waves Appl, 2012,26(16):2102. 45Shang S, Yang S, Liu J, et al. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves[J]. J Appl Phys, 2016, 120(4):509. 46Li M, Guo L, Dong J, et al. An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves[J]. J Phys D: Appl Phys, 2014,47(18):185102. 47Plum E. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers[J]. Appl Phys Lett, 2016, 108(24):146. 48Zhu B, Feng Y, Zhao J, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 2010, 18(22):23196. 49Zhang Q, Shen Z, Wang J, et al. Design of a switchable microwave absorber[J]. IEEE Antennas Wireless Propagation Lett, 2012, 11(2):1158. 50Liu S, Cui T J. Flexible controls of terahertz waves using coding and programmable metasurfaces[J]. IEEE J Selected Topics Quantum Electron, 2017, 99:1. 51Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light Sci Appl, 2016, 5(11):e16172. 52Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Adv Sci, 2016, 3(10):1600156. 53Zhai H, Zhan C, Liu L, et al. Reconfigurable wideband metamate-rial absorber with wide angle and polarisation stability[J]. Electron Lett, 2015, 51(21):1624. 54Zhai H, Zhang B, Zhang K, et al.A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability[J]. J Electromagn Waves Appl, 2017,31(4):447. |
|
|
|