REVIEW PAPER |
|
|
|
|
|
Research Progress of Dopamine in Surface Modification of Bone Repair Materials |
SHEN Jiali, SHI Chang, SHI Dongjian, ZHANG Zhuying, CHEN Mingqing
|
Key Laboratory of Food Colloids and Biotechnology of Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 |
|
|
Abstract With the increase of bone defect patients, requirements of bone repair materials become higher and higher. It is important to seek effective modification methods to prepare functional bone repair materials for improving the interaction between materials and the bone tissue and promoting bone repair rapidly. Inspired by the strong adhesive proteins secreted by mussels for attachment onto various substrates in wet condition, some research indicated that dopamine (DA) possesses the similar structure and performance to mussel adhesion proteins. Because of the strong adhesion, chemical reactivity and biocompatibility of DA, it is expected to be used for bone repair materials surface modification. This paper introduces the main performance and its research progress in surface modification of bone repair materials.
|
Published: 10 November 2017
Online: 2018-05-08
|
|
|
|
1 Wang Y J, Du C, Zhao N R, et al. Biomimetic artificial bone repair materials: A review[J]. J South China University of Technology (Natural Science Edition), 2012,40(10):51(in Chinese). 王迎军,杜昶,赵娜如,等.仿生人工骨修复材料研究[J].华南理工大学学报(自然科学版),2012,40(10):51. 2 Taskin M B, Xu R, Gregersen H, et al. Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic diffe-rentiation[J]. ACS Appl Mater Interfaces, 2016, 8(25):15864. 3 Madhurakkat Perikamana S K, Lee J, Lee Y B. Materials from mussel-inspired chemistry for cell and tissue engineering applications[J]. Biomacromolecules, 2015,16(9):2541. 4 Li Y. Based on biological adhesion molecular surface modification of tissue repair materials research[D].Beijing: Beijing University of Chemical Technology, 2013(in Chinese). 李琰.基于生物粘附分子表面改性的组织修复材料研究[D].北京:北京化工大学,2013. 5 Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative mate-rials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chem Rev, 2014, 114(9):5057. 6 Wu J J, Long Y H, Zhao N, et al. Progress on mussel-inspired bio-mimic polymers[J]. Polym Bull, 2011(10):86(in Chinese). 吴俊杰,龙宇华,赵宁,等.仿贻贝粘附高分子的研究进展[J].高分子通报,2011(10):86. 7 Ryu J H, Lee Y, Kong W H,et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic mate-rials[J]. Biomacromolecules, 2011,12(7):2653. 8 Ayyadurai N, Prabhu N S, Deepankumar K, et al. Bioconjugation of L-3,4-dihydroxyphenylalanine containing protein with a polysaccharide[J]. Bioconjugate Chem, 2011,22(4):551. 9 Rai A, Perry Carole C. Mussel adhesive protein inspired coatings: A versatile method to fabricate silica films on various surfaces[J]. J Mater Chem, 2012,22(11):4790. 10Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings[J]. Science, 2010, 328(5975):216. 11Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426. 12Postma A, Yan Y, Wang Y J, et al. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules[J]. Chem Mater, 2009,21(14):3042. 13Simon J D, Peles D N. The red and the black[J]. Accounts Chem Res, 2010,43(11):1452. 14Watt Andrew A R, Bothma Jacques P, Meredith P. The supramolecular structure of melanin[J]. Soft Matter, 2009, 5(19):3754. 15Liu Y L, Ai K L, Liu J H, et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Adv Mater, 2013,25(9):1353. 16Liu Z G, Qu S X, Weng J. Application of polydopamine in surface modification of biomaterials[J]. Prog Chem, 2015,27(Z1):212(in Chinese). 刘宗光,屈树新,翁杰.聚多巴胺在生物材料表面改性中的应用[J].化学进展,2015,27(Z1):212. 17Wang Z M, Wang K F, Zhang Y N, et al. Protein-affinitive polydopamine nanoparticles as an efficient surface modification strategy for versatile porous scaffolds enhancing tissue regeneration[J]. Particle Particle Systems Characterization, 2016,33(2):89. 18Shin J, Cho J H, Jin Y, et al. Mussel adhesion-inspired reverse transfection platform enhances osteogenic differentiation and bone formation of human adipose-derived stem cells[J]. Small, 2016,12(45):6266. 19Waite J H. The phylogeny and chemical diversity of quinone-tanned glues and varnishes[J]. Comparative Biochem Physiology Part B, 1990,97(1):19. 20Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution[J]. Langmuir, 2011,27(6):2819. 21Waite J H. Reverse engineering of bioadhesion in marine mussels[J]. Annals of the New York Academy of Sciences, 1999,875:301. 22Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly(dopamine)[J]. Langmuir, 2012,28(15):6428. 23Hong S, Na Y S, Choi S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation[J]. Adv Funct Mater, 2012,22(22):4711. 24Della Vecchia N F, Avolio R, Alfe M, et al. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point[J]. Adv Funct Mater, 2013,23(10):1331. 25Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of mussel adhesion[J]. P N A S, 2006,103(35):12999. 26Zhu L P, Xu Y Y, Xi Z Y, et al. Self-polymerization of DOPA on polyethylene porous membranes and immobilization of heparin[J]. Acta Polym Sin, 2009(4):394(in Chinese). 朱利平,徐又一,奚振宇,等.DOPA在聚乙烯微孔膜上的自聚合及肝素固定化[J].高分子学报,2009(4):394. 27Zhang L, Wu J J, Wang Y X, et al. Combination of bioinspiration: A general route to superhydrophobic particles[J]. J Am Chem Soc, 2012,134(24):9879. 28Shi D J, Zhang L, Liu R J, et al. Preparation of catechol-based polymer film for direct reduction silver nanoparticle and its antibacterial property[J]. J Funct Mater, 2016, 47(7):7017(in Chinese). 施冬健,张蕾,刘蓉瑾,等.可直接还原银纳米粒子的儿茶酚基聚合物膜的制备及抗菌性能研究[J].功能材料,2016, 47(7):7017. 29Shi D J, Wang F, Liu R J, et al. Preparation and properties of catechol-metal complexation hydrogels[J]. Polym Mater Sci Eng, 2016, 32(5):156(in Chinese). 施冬健,汪飞,刘蓉瑾,等.儿茶酚基聚合物-金属复合水凝胶的制备及其性能研究[J].高分子材料科学与工程,2016, 32(5):156. 30Shi D J, Liu R J, Dong W F, et al. pH-Dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in metal-free environment[J]. RSC Adv, 2015, 5:82252. 31Wu J J, Zhang L, Wang Y X, et al. Mussel-inspired chemistry for robust and surface-modifiable multilayer films[J]. Langmuir, 2011,27(22):13684. 32Yang K, Lee J S, Kim J, et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering[J]. Biomaterials, 2012, 33(29):6952. 33Hafner D, Ziegler L, Ichwan M, et al. Mussel-inspired polymer carpets: Direct photografting of polymer brushes on polydopamine nanosheets for controlled cell adhesion[J]. Adv Mater, 2016,28(7):1489. 34Zhong S, Luo R F, Wang X, et al. Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell[J]. Colloids Surf B: Biointerfaces, 2014,116:553. 35Shi D J, Zhang L, Shen J L, et al. Fabrication of rod-like nanocapsules based on polylactide and 3,4-dihydroxyphenylalanine for drug delivery system[J]. RSC Adv, 2015, 5:103414. 36Rim N G, Kim S J, Shin Y M, et al. Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells[J]. Colloids Surf B: Biointerfaces, 2012,91:189. 37Kao C T, Lin C C, Chen Y W, et al. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering[J]. Mater Sci Eng C, 2015,56:165. 38Ku S H, Park C B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering[J]. Biomaterials, 2010,31(36):9431. 39Luo C, Zou Z P, Luo, B H. Enhanced mechanical properties and cytocompatibility of electrospun poly(l-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes[J]. Appl Surf Sci, 2016,369:82. 40Cho H, Madhurakkat Perikamana S K, Lee J, et al. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation[J]. ACS Appl Mater Interfaces, 2014, 6(14):11225. 41Wang Z M, Li C, Xu J L, et al. Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications[J]. Chem Mater, 2015,27(3):848. 42Sun Y H, Deng Y, Ye Z Y, et al. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating[J]. Colloids Surf B: Biointerfaces, 2013,111:107. 43Lee J S, Lee K, Moon S H, et al. Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels[J]. Macromol Biosci, 2014,14(8):1181. 44Li H H, Luo C, Luo B H, et al. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functiona-lization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating[J]. Appl Surf Sci, 2016,360:858. 45Luo R F, Tang L L, Wang J, et al. Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization[J]. Colloids Surf B: Biointerfaces, 2013,106:66. 46Kim S, Park C B. Mussel-inspired transformation of CaCO3 to bone minerals[J]. Biomaterials, 2010,31(25):6628. 47Ryu J, Ku S H, Lee M, et al. Bone-like peptide/hydroxyapatite nanocomposites assembled with multi-level hierarchical structures[J]. Soft Matter, 2011, 7(16):7201. 48Chien C Y, Tsai W B. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells[J]. ACS Appl Mater Interfaces, 2013, 5(15):6975. 49Zhou Y Z. Biomimetic remineralization of dental tissue induced by polydopamine[D]. Hefei: Anhui Medical University, 2013(in Chinese). 周允芝.聚多巴胺诱导牙体组织仿生矿化的研究[D].合肥:安徽医科大学,2013. 50Kang T, Hua X L, Liang P Q, et al. Synergistic reinforcement of polydopamine-coated hydroxyapatite and BMP2 biomimetic peptide on the bioactivity of PMMA-based cement[J]. Compos Sci Tech-nol, 2016,123:232. 51Liu Z G, Qu S X, Zheng X T, et al. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro[J]. Mater Sci Eng C, 2014,44:44. 52Yang Wufeng, Zhang Xiazhi, Wu Keke, et al. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine[J]. Mater Sci Eng C,2016,69:373. 53Jo S, Kang S M, Park S A, et al. Enhanced adhesion of preosteoblasts inside 3D PCL scaffolds by polydopamine coating and mineralization[J]. Macromol Biosci 2013, 13(10):1389. 54Lee S J, Lee D, Yoon T R, et al. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering[J]. Acta Biomaterialia, 2016,40:182. 55Zhao C Y. Surface bioactivation of porous titanium with biomechanical compatibility and the bonding with bone[D].Chengdu: Sichuan University, 2007(in Chinese). 赵朝勇.生物力学相容多孔钛的表面活化及与骨界面结合研究[D].成都:四川大学,2007. 56Pan H T, Zheng Q X, Guo X D, et al. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo[J]. Colloids Surf B:Biointerfaces, 2016,142:1. |
|
|
|