REVIEW PAPER |
|
|
|
|
|
Progress in Functionalized Carbon Nanotubes-modified Thermoplastic Polymer Nanocomposites |
CHANG Yi1,2, PEI Jiuyang1,2, ZHOU Susheng1,2, CHEN Minghai2, LIU Ning1, LI Qingwen2
|
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009; 2 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 |
|
|
Abstract Carbon nanotube (CNT) exhibits excellent flexibility, ultra-high strength,good chemical stability properties as well as nanometer scale diameter and high aspect ratio, which make it an ideal reinforcement filler for high strength thermoplastic polymer composites. However, since CNT usually forms stable bundles due to strong van der Waals interactions, CNT is extremely difficult to be dispersed and aligned in polymer matrix. This paper reviews recent research progress of the related technology to improve the surface modification and dispersion of CNT in thermoplastic polymer matrix, and also introduces the physical properties and applications of the nanocomposites.Finally the current key problem of CNT application in thermoplastic polymer composites is elaborated.
|
Published: 10 October 2017
Online: 2018-05-07
|
|
|
|
1 De Volder M F L,Tawfick S H,Baughman R H, et al. Carbon nanotubes: Present and future commercial applications[J].Science,2013,339(6119):535.
2 Ma P C,Siddiqui N A,Marom G, et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Appl Sci Manuf,2010,41(10):1345.
3 Sahoo N G,Rana S,Cho J W, et al. Polymer nanocomposites based on functionalized carbon nanotubes[J]. Prog Polym Sci,2010,35(7):837.
4 Deng H,Lin L,Ji M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Prog Polym Sci,2014,39(4):627.
5 Byrne M T, Gun′ko Y K. Recent advances in research on carbon nanotube-polymer composites[J]. Adv Mater,2010,22(15):1672.
6 Ajayan P M,Stephan O,Colliex C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science,1994,265(5176):1212.
7 Grunlan J C,Mehrabi A R,Bannon M V, et al. Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold[J]. Adv Mater,2004,16(2):150.
8 Wu T, Chen E. Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology[J]. Compos Sci Technol,2008,68(10-11):2254.
9 Pang H,Chen C,Bao Y, et al. Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure[J]. Mater Lett,2012,79:96.
10 Du J H,Bai J, Cheng H M. The present status and key problems of carbon nanotube based polymer composites[J]. Express Polym Lett,2007,1(5):253.
11 Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants[J]. Sci Technol Adv Mater,2016,16(2):024802.
12 Jogi B F, Sawant M,Kulkarni M, et al. Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: A review[J]. J Encapsulation Adsorption Sci,2012,2(4):69.
13 Mittal G,Dhand V,Rhee K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. J Ind Eng Chem,2015,21:11.
14 Zheng Q,Xia D,Xue Q, et al. Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system[J]. Appl Surf Sci,2009,255(6):3534.
15 Müller M T,Krause B, Pötschke P. A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive[J]. Polymer,2012,53(15):3079.
16 Müller M T,Pötschke P, Voit B. Dispersion of carbon nanotubes into polyethylene by an additive assisted one-step melt mixing approach[J]. Polymer,2015,66:210.
17 Coleman J N,Khan U, Gun′ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Adv Mater,2006,18(6):689.
18 Mir S M,Jafari S H,Khonakdar H A, et al. A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions[J]. Mater Des,2016,111:253.
19 Yoon H,Yamashita M,Ata S, et al. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites[J]. Sci Rep,2014,4:3907.
20 Mu M,Walker A M,Torkelson J M, et al. Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes[J]. Polymer,2008,49(5):1332.
21 Socher R,Krause B,Müller M T, et al. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites[J]. Polymer,2012,53(2):495.
22 Villmow T,Pötschke P,Pegel S, et al. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix[J]. Polymer,2008,49(16):3500.
23 Villmow T, Kretzschmar B, Pötschke P. Influence of screw confi-guration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites[J]. Compos Sci Technol,2010,70(14):2045.
24 Socher R,Jakisch L,Krause B, et al. Interfacial chemistry using a bifunctional coupling agent for enhanced electrical properties of carbon nanotube based composites[J]. Polymer,2013,54(20):5391.
25 Hu N,Zhou H,Dang G, et al. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization[J]. Polym Int,2007,56 (5):655.
26 Blond D,Barron V,Ruether M, et al. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functio-nalized nanotubes[J]. Adv Funct Mater,2006,16(12):1608.
27 Xia H S, Song M. Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites[J]. J Mater Chem,2006,16(19):1843.
28 Tang Guoqiang,Wang Hongmin, Jin Shengsong, et al.Interaction between multi-walled carbon nanotubes and bromime and conducting mechanism [J]. Acta Chim Sin,2008, 66(6):675(in Chinese).
唐国强,王红敏,晋圣松,等.多壁碳纳米管与溴的相互作用及导电机理[J]. 化学学报,2008,66(6):675.
29 Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2.
30 Wang Xian. The conductive mechanism & influencing factors of the carbon nano-tube conductive coatings[J]. Shanghai Coatings,2012,50(9):40(in Chinese).
王娴.碳纳米管导电涂料的导电机理及影响因素[J]. 上海涂料,2012,50(9):40.
31 Zhang R,Baxendale M, Peijs T. Universal resistivity-strain depen-dence of carbon nanotube/polymer composites[J]. Phys Rev B,2007,76(19):5433.
32 Sandler J K W,Kirk J E,Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer,2003,44(19):5893.
33 Guo J X,Liu Y J,Prada-Silvy R, et al. Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites[J]. J Polym Sci Part B: Polym Phys,2014,52(1):73.
34 Grossiord N,Loos J,van Laake L, et al. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers[J]. Adv Funct Mater,2008,18(20):3226.
35 Gao X,Zhang S,Mai F, et al. Preparation of high performance conductive polymer fibres from double percolated structure[J]. J Mater Chem,2011,21(17):6401.
36 Zhang S,Deng H,Zhang Q, et al. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties[J]. ACS Appl Mater Interfaces,2014,6(9):6835.
37 Lellinger D,Xu D,Ohneiser A, et al. Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites[J]. Physica Status Solidi B,2008,245(10):2268.
38 Peng B,Locascio M,Zapol P, et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements[J]. Nat Nanotechnol,2008,3(10):626.
39 Wang G,Qu Z,Liu L, et al. Study of SMA graft modified MWNT/PVC composite materials[J]. Mater Sci Eng A,2008,472(1-2):136.
40 Sahoo N G,Jung Y C,Yoo H J, et al. Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites[J]. Macromolecular Chem Phys,2006,207(19):1773.
41 Wang T L, Tseng C G. Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane[J]. J Appl Polym Sci,2007,105(3):1642.
42 McClory C,McNally T,Brennan G P, et al. Thermosetting polyurethane multiwalled carbon nanotube composites[J]. J Appl Polym Sci,2007,105(3):1003.
43 Meincke O,Kaempfer D,Weickmann H, et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene[J]. Polymer,2004,45(3):739.
44 Wang H, Xiao R. Preparation and characterization of CNTs/PE micro-nanofibers[J]. Polym Adv Technol,2012,23(3):508.
45 Kim H S,Jang J U,Yu J, et al. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes[J]. Composites Part B: Engineering,2015,79:505.
46 Liu Keyan, Ding Changkun, Guo Chengyue, et al. Preparation and properties of polyethylene terephthalate multi-walled carbon nanotubes nanocomposites[J]. J Funct Mater, 2014(23):23025(in Chinese).
刘柯妍,丁长坤,郭成越,等.聚对苯二甲酸乙二醇酯/多壁碳纳米管基复合材料制备与性能研究[J]. 功能材料,2014(23):23025.
47 Jia J,Zhu L,Wei Y, et al. Triazine-phosphine oxide electron transporter for ultralow-voltage-driven sky blue PHOLEDs[J]. J Mater Chem C,2015,3(19):4890.
48 Yang W,Zhou H,Yang B, et al. Facile preparation of modified carbon nanotube-reinforced PBT nanocomposites with enhanced thermal, flame retardancy, and mechanical properties[J]. Polym Compos,2016,37(6):1812.
49 Wang Zhimiao,Zhang Xingxiang,Wang Xuechen, et al.Preparation and properties of melt-blended carboxyl multi-walled carbon nanotubes/PA66 composite fibers [J].Acta Mater Compos Sin,2011,28(2):16(in Chinese).
王志苗,张兴祥,王学晨,等.熔融共混法制备羧基化多壁碳纳米管/PA66复合纤维及其性能[J].复合材料学报,2011,28(2):16.
50 Lin Z,Zeng Z,Gui X, et al. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications[J]. Adv Energy Mater,2016,6(17):1600554.
51 Connolly T,Smith R C,Hernandez Y, et al. Carbon-nanotube-polymer nanocomposites for field-emission cathodes[J]. Small,2009,5(7):826.
52 Jin Y W,Jung J E,Park Y J, et al. Triode-type field emission array using carbon nanotubes and a conducting polymer composite prepared by electrochemical polymerization[J]. J Appl Phys,2002,92(2):1065. |
|
|
|