REVIEW PAPER |
|
|
|
|
|
A Review of Chemical Vapor Deposition for Synthesis of Boron Nitride Nanotubes:Reaction Devices, Vapor Sources and Catalysts |
LONG Xiaoyang1,2, E Songfeng2, LI Chaowei2 , LI Taotao2 , WU Jun1, YAO Yagang2
|
1 The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081; 2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215000 |
|
|
Abstract Boron nitride nanotubes (BNNTs) have great application potential in aerospace radiation shielding materials, thermal interface materials, deep ultraviolet emission materials and many other fields due to their excellent performances—oxidation resistance, radiation shield, heat conduction and so forth. However, BNNTs’ controllable and large scale preparation still faces an enormous challenge. Among the different kinds of BNNTs’ preparation methods, chemical vapor deposition (CVD) is one of the most promising methods for its controllable preparation. Nevertheless, scientists have not reached a consensus on the growth mechanism and influencing factors of BNNTs’ synthesis by CVD. Hence, this article provides a review on preparation of BNNTs by CVD, and a discussion about the effects of reaction devices, nitrogen sources, boron sources and catalysts. Besides, the unsettled issues and a prospect for the controllable synthesis of BNNT by CVD are also proposed.
|
Published: 10 October 2017
Online: 2018-05-07
|
|
|
|
1 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56. 2 Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron-nitride nanotubes[J]. Phys Rev B,1994, 49(7):5081. 3 Chopra N G, Luyken R J, et al. Boron-nitride nanotubes[J]. Scien-ce,1995,269(5226):966. 4 Lee C H, Xie M, Kayastha V, et al. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition[J]. Chem Mater,2010,22(5):1782. 5 Ishigami M, Aloni S, Zettl A. Properties of boron nitride nanotubes[J]. Scanning Tunn Microsc/Spectrosc Relat Tech,2003,696:94. 6 Zhi C Y, Bando Y, Tang C C, et al. Perfectly dissolved boron nitride nanotubes due to polymer wrapping[J]. J Am Chem Soc,2005,127(46):15996. 7 Lee C H, Bhandari S, Tiwari B, et al. Boron nitride nanotubes: Recent advances in their synthesis, functionalization, and applications[J]. Molecules,2016,21(7):922. 8 Chang C W, Fennimore A M, Afanasiev A, et al. Isotope effect on the thermal conductivity of boron nitride nanotubes[J]. Phys Rev Lett,2006,97(8):085901. 9 Cohen M L, Zettl A. The physics of boron nitride nanotubes[J]. Phys Today,2010,63(11):34. 10 Engels R, Kemmerling G, Schelten J. Boron nitride, a neutron scintillator with deficiencies[C]∥IEEE Nuclear Science Symposium Conference Record. IEEE,2005:1318. 11 Tanur A E, Wang J S, Reddy A L M, et al. Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes[J]. J Phys Chem B,2013,117(16):4618. 12 Nigues A, Siria A, Vincent P, et al. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes[J]. Nat Mater,2014,13(7):688. 13 Kang J H, Sauti G, et al. Multifunctional electroactive nanocompo-sites based on piezoelectric boron nitride nanotubes[J]. ACS Nano,2015,9(12):11942. 14 Jakubinek M B, Niven J F, Johnson M B, et al. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites[J]. Phys Status Solidi A—Appl Mater Sci,2016, 213(8):2237. 15 Lee C H, Drelich J, Yap Y K. Superhydrophobicity of boron nitride nanotubes grown on silicon substrates[J]. Langmuir,2009,25(9):4853. 16 Boinovich L B, Emelyanenko A M, Pashinin A S, et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings[J]. Langmuir,2012,28(2):1206. 17 Li J, Dai W, Chen M, et al. A novel single-source precursor for collapsed boron nitride nanotubes with high hydrogen storage capacity[J]. Funct Mater Lett,2016,9(06):1642001. 18 Salvetti A, Rossi L, Iacopetti P, et al. In vivo biocompatibility of boron nitride nanotubes: Effects on stem cell biology and tissue regeneration in planarians[J]. Nanomedicine,2015,10(12):1911. 19 Ciofani G, Danti S, Nitti S, et al. Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation[J]. Int J Pharm,2013,444(1-2):85. 20 Yamaguchi M, Meng F Q, Firestein K, et al. Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties[J]. Mater Sci Eng A,2014,604:9. 21 Lee C H, Qin S Y, Savaikar M A, et al. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold ouantum dots[J]. Adv Mater,2013,25(33):4544. 22 Hao B, Asthana A, Hazaveh P K, et al. New flexible channels for room temperature tunneling field effect transistors[J]. Sci Rep,2016,6:20293. 23 Parashar V, Durand C P, Hao B Y, et al. Switching behaviors of graphene-boron nitride nanotube heterojunctions[J]. Sci Rep,2015,5:12238. 24 Shuai C J, Gao C D, Feng P, et al. Boron nitride nanotubes reinforce tricalcium phosphate scaffolds and promote the osteogenic differentiation of mesenchymal stem cells[J]. J Biomed Nanotechnol,2016, 12(5):934. 25 Grant J T, Carrero C A, Goeltl F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science,2016,354(6319):1570. 26 Loiseau A, Willaime F, Demoncy N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge[J]. Phys Rev Lett,1996,76(25):4737. 27 Cumings J, Zettl A. Mass-production of boron nitride double-wall nanotubes and nanococoons [J]. Chem Phys Lett,2000,318(4-5):497. 28 Golberg D, Bando Y, Eremets M, et al. Nanotubes in boron nitride laser heated at high pressure[J]. Appl Phys Lett,1996,69(14):2045. 29 Lee R S, Gavillet J, De La Chapelle M L, et al. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration[J]. Phys Rev B,2001,64(12):121405. 30 Naumov V G, Kosyrev F K, Vostrikov V G, et al. Synthesis of boron nitride multi-walled nanotubes by laser ablation technique[J]. Laser Phys,2009,19(5):1198. 31 Chen H, Chen Y, Liu Y, et al. Over 1.0mm-long boron nitride nanotubes[J]. Chem Phys Lett, 2008,463(1-3):130. 32 Yong Bae S, Won Seo H, Park J, et al. Boron nitride nanotubes synthesized in the temperature range 1 000—1 200 ℃[J]. Chem Phys Lett,2003,374(5-6):534. 33 Li L H, Chen Y, Glushenkov A M. Synthesis of boron nitride nanotubes by boron ink annealing[J]. Nanotechnology,2010,21(10):105601. 34 Li L, Li L H, Chen Y, et al. Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth[J]. Nanoscale Res Lett,2012,7:417. 35 Zhuang C, Xu H, Li L, et al. Systematic investigation of the ball milling-annealing growth and electrical properties of boron nitride nanotubes[J]. RSC Adv,2016,6(114):113415. 36 Golberg D, Bando Y, Kurashima K, et al. MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates[J]. Chem Phys Lett,2000,323(1-2):185. 37 Han W Q, Bando Y, Kurashima K, et al. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction[J]. Appl Phys Lett,1998,73(21):3085. 38 Wang Y, Yamamoto Y, Kiyono H, et al. Highly ordered boron nitride nanotube arrays with controllable texture from ammonia borane by template-aided vapor-phase pyrolysis[J]. J Nanomater, 2009,2008(6):72. 39 Zhi C Y, Bando Y, Tan C C, et al. Effective precursor for high yield synthesis of pure BN nanotubes[J]. Solid State Commun,2005,135(1-2):67. 40 Ahmad P, Khandaker M U, Khan Z R, et al. Synthesis of boron nitride nanotubes via chemical vapour deposition: A comprehensive review[J]. RSC Adv,2015,5(44):35116. 41 Lee C H, Wang J, Kayatsha V K, et al. Effective growth of boron nitride nanotubes by thermal chemical vapor deposition[J]. Nanotechnology,2008,19(45):455605. 42 Ahmad P, Khandaker M U, Amin Y M. Synthesis of boron nitride nanotubes by argon supported thermal chemical vapor deposition[J]. Physica E,2015,67:33. 43 Li L, Liu X W, Li L H, et al. High yield BNNTs synthesis by promotion effect of milling-assisted precursor[J]. Microelectron Eng,2013,110:256. 44 Wang L J, Li T T, Ling L, et al. Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition[J]. Chem Phys Lett,2016,652:27. 45 Tang C C, Bando Y, Sato T. Synthesis and morphology of boron nitride nanotubes and nanohorns[J]. Appl Phys A,2002,75(6):681. 46 Huang Y, Lin J, Tang C, et al. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm[J]. Nanotechnology,2011, 22(14):145602. 47 Singhal S K, Srivastava A K, Gupta A K, et al. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method[J]. J Nanopart Res,2010,12(7):2405. 48 Seo D, Kim J, Park S H, et al. Synthesis of boron nitride nanotubes using thermal chemical vapor deposition of ball milled boron powder[J]. J Ind Eng Chem,2013,19(4):1117. 49 Wen G, Zhang T, Huang X X, et al. Synthesis of bulk quantity BN nanotubes with uniform morphology[J]. Scr Mater,2010,62(1):25. 50 Pan A, Chen Y. Large-scale fabrication of boron nitride nanotubes with high purity via solid-state reaction method[J]. Nanoscale Res Lett,2014,9(1):555. 51 Li L H, Chen Y, Glushenkov A M. Boron nitride nanotube films grown from boron ink painting[J]. J Mater Chem,2010,20(43):9679. 52 Zhuang C C, Feng J, Xu H, et al. Synthesis of boron nitride nanotube films with a nanoparticle catalyst[J]. Chin Chem Lett,2016,27(6):871. 53 Kalay S, Yilmaz Z, Sen O, et al. Synthesis of boron nitride nanotubes and their applications[J]. Beilstein J Nanotechnol,2015,6:84. 54 Su C Y, Chu W Y, Juang Z Y, et al. Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts[J]. J Phys Chem C,2009,113(33):14732. 55 Li L H, Li C P, Chen Y. Synthesis of boron nitride nanotubes, bamboos and nanowires[J]. Physica E, 2008,40(7):2513. 56 Yu J, Li B C P, Zou J, et al. Influence of nitriding gases on the growth of boron nitride nanotubes[J]. J Mater Sci,2007,42(11):4025. 57 Chen Y, Fitz Gerald J, Williams J S, et al. Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling[J]. Chem Phys Lett,1999,299:260. 58 Fitz Gerald J D, Chen Y, Conway M J. Nanotube growth during annealing of mechanically milled boron[J]. Appl Phys A,2003,76(1):107. 59 Ma R, Bando Y, Sato T. CVD synthesis of boron nitride nanotubes without metal catalysts[J]. Chem Phys Lett,2001,337(1-3):61. 60 Ma R Z, Bando Y, Sato T, et al. Thin boron nitride nanotubes with unusual large inner diameters[J]. Chem Phys Lett,2001,350(5-6):434. 61 Ma R Z, Bando Y, Sato T, et al. Growth, morphology, and structure of boron nitride nanotubes[J]. Chem Mater,2001,13(9):2965. 62 Lourie O R, Jones C R, Bartlett B M, et al. CVD growth of boron nitride nanotubes[J]. Chem Mater, 2000,12(7):1808. 63 Kim M J, Chatterjee S, Kim S M, et al. Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition[J]. Nano Lett,2008,8(10):3298. 64 Batterman S, Kovacs E. Threshold quantity criteria for risk management programs: Recommendations for toxic releases[J]. J Hazard Mater,2003,105(1-3):39. 65 Lin C C, Wang J D, Hsieh G Y, et al. Increased risk of death with congenital anomalies in the offspring of male semiconductor workers[J]. Int J Occupat Environ Health,2008,14(2):112. 66 Torres-Vega J J, Vasquez-Espinal A, Caballero J, et al. Minimizing the risk of reporting false aromaticity and antiaromaticity in inorganic heterocycles following magnetic criteria[J]. Inorg Chem, 2014,53(7):3579. 67 Li Y, Zhou J E, Zhao K, et al. Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process[J]. Mater Lett,2009,63(20):1733. 68 Zhang J, Li Z Q, Xu J. Formation and structure of boron nitride nanotubes[J]. J Mater Sci Technol,2005,21(1):128. 69 Wang J, Gu Y, Zhang L, et al. Synthesis of boron nitride nanotubes by self-propagation high-temperature synthesis and annealing method[J]. J Nanomater,2010,2010(1687-4110):80. 70 Li Y L, Cai B Q, Zhang J X. Preparation of BN nanotube by magnesiothermic reduction[J]. J Mater Eng,2008(10):85(in Chinese). 李永利, 蔡柏奇, 张久兴. 镁热还原制备BN纳米管[J]. 材料工程,2008(10):85. 71 Deepak F L, Vinod C P, Mukhopadhyay K, et al. Boron nitride nanotubes and nanowires[J]. Chem Phys Lett,2002,353(5-6):345. 72 Tay R Y, Li H, Tsang S H, et al. Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition[J]. Chem Mater,2015,27(20):7156. 73 Kalay S, Yilmaz Z. Synthesis of boron nitride nanotubes from unprocessed colemanite[J]. Beilstein J Nanotechnol,2013,4:843. 74 Matveev A T, Firestein K L, Steinman A E, et al. Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals[J]. J Mater Chem A,2015,3(41):20749. 75 Tang C, Bando Y, Sato T, et al. A novel precursor for synthesis of pure boron nitride nanotubes[J]. Chem Commun,2002(12):1290. 76 Nithya J S M, Pandurangan A. Efficient mixed metal oxide routed synthesis of boron nitride nanotubes[J]. RSC Adv,2014,4(51):26697. 77 Pakdel A, Zhi C Y, Bando Y, et al. A comprehensive analysis of the CVD growth of boron nitride nanotubes[J]. Nanotechnology,2012,23(21):1215601. 78 Kim K S, Kingston C T, Hrdina A, et al. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies[J]. ACS Nano,2014,8(6): 6211. 79 Fathalizadeh A, Pham T, Mickelson W, et al. Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma[J]. Nano Lett,2014,14(8):4881. 80 Huo K F, Hu Z, Fu J J, et al. Microstructure and growth model of periodic spindle-unit BN nanotubes by nitriding Fe-B nanoparticles with nitrogen/ammonia mixture[J]. J Phys Chem B,2003, 107(41):11316. 81 Fu J J, Lu Y N, Xu H, et al. The synthesis of boron nitride nanotubes by an extended vapour-liquid-solid method[J]. Nanotechnology,2004,15(7):727. 82 Loh K P, Lin M, Yeadon M, et al. Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles[J]. Chem Phys Lett,2004,387(1-3):40. 83 Huo K F, Hu Z, Chen F, et al. Synthesis of boron nitride nanowires[J]. Appl Phys Lett,2002,80(19): 3611. 84 Su C Y, Juang Z Y, Chen K F, et al. Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD me-thods[J]. J Phys Chem C,2009,113(33):14681. 85 Guo L, Singh R N. Selective growth of boron nitride nanotubes by plasma-enhanced chemical vapor deposition at low substrate temperature[J]. Nanotechnology,2008,19(6):72. 86 Belkerk B E, Achour A, Zhang D Y, et al. Thermal conductivity of vertically aligned boron nitride nanotubes[J]. Appl Phys Express,2016,9(7):075002. 87 Kubota Y, Watanabe K, Tsuda O, et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure[J]. Science,2007,317(5840):932. 88 Carlson O N, Lichtenberg R R, Warner J C. Solid solubilities of oxy-gen, carbon and nitrogen in yttrium[J]. J Less-Common Met,1974,35(2):275. 89 Wang L, Li T, Long X, et al. Bimetallic catalytic growth of boron nitride nanotubes[J]. Nanoscale, 2017,9(5):1816. |
[1] |
MA Runshan, WANG Haiyan, ZHANG Qi, YANG Jianxin, TANG Bin, LI Rui, LI Shuangshou, LIN Wanming, FAN Jinping. Effect of MXene on the Catalytic Performance of Bimetallic Catalysts for Zinc-Air Batteries[J]. Materials Reports, 2025, 39(2): 24020010-8. |
|
|
|
|