RESEARCH PAPER |
|
|
|
|
|
Effect of Carbon Source on Synthesis and Particle Size of Nano-ZnAl2O4 |
WEN Yubin, LIU Xinhong, GU Qiang, CHEN Xiaoyu, JIA Quanli, YANG Lin, MA Teng
|
Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052 |
|
|
Abstract Nano ZnAl2O4 powders were prepared by sol-gel method with aluminum nitrate, zinc nitrate and citric acid as star-ting material, carbon black and phenolic formaldehyde resin as carbon source. Effect of different carbon source on synthesis and particle size of nano-ZnAl2O4 were studied in reducing atmosphere at high temperature, comparing with samples which conducted heat treatment in air without carbon addition. The results showed that XRD peaks of samples with carbon addition were not detected after heat treatment at 600 ℃ in reducing atmosphere. The reason was that carbon acts as steric hindrance, which inhibited ions movement. Nano ZnAl2O4 with fine particles (20—30 nm) could be synthesized at 800 ℃ with carbon addition, and nano-ZnAl2O4 particle size was almost no change when the temperature increased from 800 ℃ to 1 000 ℃. Carbon surrounding the ZnAl2O4 particles prevented effectively the growth and sintering of the particles. Phenolic resin was better than carbon black for inhibiting ZnAl2O4 particle growth, which might be phenolic resin carbonized with some glassy carbon, leading to better retarding effect. But when the temperature was no less than 1 200 ℃, ZnAl2O4 was easy to react with CO or C to form volatile Zn(g), there was only single crystal phase α-Al2O3. However, nano-ZnAl2O4 particles could be synthesized at 600 ℃ in air without carbon addition, but the particles increased noticeably (from 27.5 nm to 54.6 nm) with temperature increasing from 600 ℃ to 800 ℃, and the particles exhibited sintered state.
|
Published: 25 September 2017
Online: 2018-05-08
|
|
|
|
1 Yan D L, Chen L, Song J G. Effect of complex ion concentration on the particle size of nano zinc aluminium oxide (ZAO) [J]. J Synthet Crystals, 2011,40(3):704(in Chinese). 颜东亮, 陈林, 宋杰光. 络离子浓度对掺铝氧化锌(ZAO)纳米粉体粒径的影响[J]. 人工晶体学报, 2011,40(3):704. 2 Yan D L,Wu J Q,Zhong Y. Fabrication and properties of antimony-doped tin oxide-coated silicon dioxide conductive powder[J]. J Chinese Ceram Soc, 2009,37(4):591(in Chinese). 颜东亮, 吴建青, 钟燚. 锑掺杂氧化锡包覆氧化硅导电粉的制备及电性能[J]. 硅酸盐学报, 2009,37(4):591. 3 Xiong G, Li X C. The study of sintering technics on the synthesis of dense corundum-mullite-ZnO·Al2O3 multiphase materials[J]. J Xianning College, 2005,25(3):36(in Chinese). 熊钢, 李享成. 合成致密刚玉-莫来石-锌铝尖晶石复相材料的工艺研究[J]. 咸宁学院学报, 2005,25(3):36. 4 Zhu B Q, Li X C. Thermodynamics study on synthesizing corundum-mullite-gahnite multiphase materials[J]. China’s Refractories, 2004,38(2):63(in Chinese). 朱伯铨, 李享成. 刚玉-莫来石-锌铝尖晶石复相材料合成的热力学研究[J]. 耐火材料, 2004,38(2):63. 5 Li L S, Xiang C X, Li S Q, et al. Synthesis of zine aluminum oxide spinel[J]. J University of Science and Technology Beijing, 2000,22(1):23(in Chinese). 李联生, 项长祥, 李士琦, 等. 锌铝尖晶石的研制[J]. 北京科技大学学报, 2000,22(1):23. 6 Li L S, Xiang C X, Zhao P, et al. Decopperization in steel melt through filtration[J]. J Iron Steel Res, 1998,10(3):5(in Chinese). 李联生, 项长祥, 赵沛, 等. 熔体过滤法钢液脱铜的研究[J]. 钢铁研究学报, 1998,10(3):5. 7 Wu S, Mo L, Shui Z, et al. Investigation of the conductivity of asphalt concrete containing conductive fillers[J]. Carbon, 2005,43(7):1358. 8 Jeschke P, Mortl G. Recent tendencies in refractories for iron and steel production[C]//3rd Unified International Technical Conference on Refractories. Sao Paulo, 1993:17. 9 Liu X H, Zhu X Y,Ma T, et al. Study progress of applications of nano-technology in refractories[J]. Bull Chinese Ceram Soc, 2014,33(10):2514(in Chinese). 刘新红, 朱晓燕, 马腾, 等. 纳米技术在耐火材料中应用的研究进展[J]. 硅酸盐通报, 2014,33(10):2514. 10Zhang W. Application progress of nano-technology in refractories[J]. Metal Mater Metall Eng, 2013,43(1):46(in Chinese). 张巍. 纳米技术在耐火材料中的应用进展[J]. 金属材料与冶金工程, 2013,43(1):46. 11Duan X, Yuan D, Sun Z, et al. Preparation of Co2+-doped ZnAl2O4, nanoparticles by citrate sol-gel method[J]. J Alloys Compd, 2005,386(1-2):311. 12Visinescu D, Jurca B, Ianculescu A, et al. Starch-a suitable fuel in new low-temperature combustion-based synthesis of zinc aluminate oxides[J]. Polyhedron, 2011,30(17):2824. 13Chen L, Sun X, Liu Y, et al. Porous ZnAl2O4 synthesized by a modified citrate technique[J]. Chem Inform, 2004,35(41):257. 14Li X, Zhu Z, Zhao Q, et al. Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study[J]. Chemosphere, 2011,83(5):674. 15Souto De, Viana K M, Dantas B B, et al. Influence of fuel in the synthesis of ZnAl2O4 catalytic supports by combustion reaction[C]∥ 7th International Latin American Conference on Powder Technology. Atibaia, 2010:660. 16Davar F, Salavati-Niasari M. Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol-gel method using new precursor[J]. J Alloys Compd, 2011,509(509):2487. 17Kurajica S, Tkalcec E, Sipusic J, et al. Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol-gel technique using modified alkoxide precursor[J]. J Sol-Gel Sci Technol, 2008,46(2):152. 18Silva A A D, Gonçalves A D S, Davolos M R. Characterization of nanosized ZnAl2O4, spinel synthesized by the sol-gel method[J]. J Sol-Gel Sci Technol, 2009,49(1):101. 19Li J G, Ikegami T, Lee J H, et al. A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder[J]. Ceram Int, 2001,27(4):481. 20Adak A K, Saha S K, Pramanik P. Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique[J]. J Mater Sci Lett, 1997,16(3):234. 21Wang R T, Liang X P, Peng Y, et al. Effect of the reaction tempera-ture on nanocrystallites MgAl2O4 spinel ceramic precursor[J]. J Ceram Process Res, 2009,10(6):780. 22Wen Y B, Liu X H, Chen X Y, et al. Effects of heat treatment conditions on size of nano ZnAl2O4 particles[J]. J Chinese Ceram Soc, 2017,45(6):880(in Chinese). 文钰斌, 刘新红, 陈晓雨, 等. 热处理条件对纳米锌铝尖晶石颗粒尺寸的影响[J]. 硅酸盐学报, 2017,45(6):880. 23Yao X M, Liang H Q, Liu X J, et al. Effect of carbon source and adding ratio on the microstructure and properties of solid-state sintering silicon carbide[J]. J Inorgan Mater, 2013,28(9):1009(in Chinese). 姚秀敏, 梁汉琴, 刘学建,等. 碳源及添加比例对固相烧结碳化硅陶瓷微观结构及性能的影响[J]. 无机材料学报, 2013,28(9):1009.24Li Y W, Tian C L, Zhao L, et al. Preparation and phase transformation of nano-sized zirconia powder surrounded by carbon[J]. J Chinese Ceram Soc, 2009,37(8):1273(in Chinese). 李亚伟, 田彩兰, 赵雷, 等. 碳包纳米氧化锆粉体的制备及其晶型转变[J]. 硅酸盐学报, 2009,37(8):1273. 25Xiong Lizhi. Preparation of high-purity zinc by vacuum carbon reduction from zinc oxide ore[D]. Changsha: Central South University, 2011(in Chinese). 熊利芝. 真空碳热还原处理含锌氧化矿获得高纯锌研究[D]. 长沙: 中南大学, 2011. 26徐采栋, 林蓉, 汪大成, 等. 锌冶金物理化学[M]. 上海: 上海科学技术出版社, 1979:40. 27Qin H X, Li Y, Sun J L, et al. Reaction mechanism of ferro-silicon nitride-corundum composite with carbon embedded[J]. J Chinese Ceram Soc, 2014,42(9):1184(in Chinese). 秦海霞, 李勇, 孙加林, 等. 埋碳条件下氮化硅铁-刚玉复合材料的反应机理[J]. 硅酸盐学报, 2014,42(9):1184. 28Zhang H J, Jia X L, Liu Z J, et al. The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol-gel process[J]. Mater Lett, 2004,58(10):1625. 29Wei X, Chen D. Synthesis and characterization of nanosized zinc aluminate spinel by sol-gel technique[J]. Mater Lett, 2006,60(6):823. 30Staszak W, Zawadzki M, Okal J. Solvothermal synthesis and chara-cterization of nanosized zinc aluminate spinel used in iso-butane combustion[J]. J Alloys Compd, 2010,492(1-2):500. 31Zhang Y N, Xun Y D, Gao L Y, et al. Microstructural evolution of phenolic resin-based carbon/carbon composites during pyrolysis[J]. Acta Mater Compos Sin, 2006,23(1):37(in Chinese). 张亚妮, 徐永东, 高列义, 等. 基于酚醛树脂的碳/碳复合材料在高温分解过程的微结构演变[J]. 复合材料学报, 2006,23(1):37. |
|
|
|