RESEARCH PAPER |
|
|
|
|
|
Ba2+ Co-doped YPO4∶Tb3+ Phosphors:Hydrothermal Synthesis and Photoluminescence Properties |
FU Bing1,2, OU Ya1,2, LIU Huan1,2, GU Manqi1, CHEN Zhuo1,2, YANG Jinyu1,2
|
1 School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001; 2 Key Lab for Functional Materials Chemistry of Guizhou Province, Guiyang 550001 |
|
|
Abstract Ba2+ co-doped YPO4∶Tb3+phosphors were successfully synthesized by hydrothermal method. The crystal structure and optical properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL). The influences of Ba2+ co-doping concentration and precursor solution pH on the phase structure and luminescence properties of the as-products were investigated. The results show that the pH and Ba2+ co-doping concentration play the key role in the structure and luminescence properties of the as-synthesized samples. A small amount of Ba2+ (no more than 10 at%) co-doped YPO4∶1 at%Tb3+ samples are single-phase crystals with tetragonal xenotime structure, and Ba3(PO4)2 impurity phase can be observed in the sample co-doped with a large amount of Ba2+. The pure and high crystallinity Ba2+, Tb3+ co-doped YPO4 samples can be obtained at pH 6 condition. The results of excitation and emission spectra show that the YPO4∶1 at%Tb3+, x at%Ba2+ samples can be excited by 225 nm UV light and emit the characteristic yellow-green light of Tb3+. An appropriate amount of Ba2+ co-doped YPO4∶1 at%Tb3+ samples display enhanced luminescence, and a large amount of Ba2+ (more than 10 at%) co-doping in the YPO4∶1 at%Tb3+ samples can quench the Tb3+ emission. The optimized doping content of Ba2+ is 10 at%. The intensity of emission peak located at 545 nm of YPO4∶1 at%Tb3+, 10 at% Ba2+ sample are 1.8 times as many of the YPO4∶1 at%Tb3+ sample.
|
Published: 25 September 2017
Online: 2018-05-08
|
|
|
|
1 Luwang M N, Ningthoujam R S, et al. Effects of Ce3+ codoping and annealing on phase transformation and luminescence of Eu3+-doped YPO4 nanorods: D2O solvent effect[J]. J Am Chem Soc, 2010,132(8):2759. 2 Gao Y Y, Zhan S P, Zhong H. Tuning of Ce3+ doping on emissions of YPO4∶Tb3+, Ce3+microspheres and energy transfer between Ce3+ and Tb3+[J]. Chin J Nonferrous Metals, 2012,22(12):3562(in Chinese). 高永毅, 占世平, 钟慧. Ce3+ 对YPO4∶Tb3+, Ce3+微米球的发光调制及Tb3+与Ce3+间的能量传递[J]. 中国有色金属学报, 2012,22(12):3562. 3 He Y, Zhao M, Song Y, et al. Effect of Bi3+ on fluorescence pro-perties of YPO4∶Dy3+ phosphors synthesized by a modified chemical co-precipitation method[J]. J Lumin, 2011,131(6):1144. 4 Yang J, Luo L, Chen Z, et al. Tb-doped YPO4 phosphors: Polyacrylamide gel synthesis and optical properties[J]. J Alloys Compd, 2016,689:837. 5 Zhang L, Jiu H, Fu Y, et al. Preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 hollow microspheres[J]. J Rare Earths, 2013,31(5):449. 6 Angiuli F, Cavalli E, Belletti A, et al. Synthesis and spectroscopic characterization of YPO4 activated with Tb3+ and effect of Bi3+ co-doping on the luminescence properties[J]. J Solid State Chem,2012,192:289. 7 Yang Y, Ding M, Song G, et al. Improved luminescence of YPO4∶Eu3+ phosphors by codoping Ca2+[J]. Chem Phys Lett, 2015,639:67. 8 Zeng Xiaodao, Jia Xiaohui, Zhu Liping. Hydrothermal synthesis and luminescent properties of Co2+ doped YPO4∶Eu3+ phosphors[J]. Rare Metals Cemented Carbides, 2016(1):50(in Chinese). 曾晓岛, 贾晓卉, 朱莉萍. Co2+掺杂YPO4∶Eu3+荧光材料的水热合成及其发光性能[J]. 稀有金属与硬质合金, 2016(1):50. 9 Zhan Y, Du G, Chen N, et al. Photoluminescence properties of YVO4∶Eu3+,Ba2+ nanoparticles prepared by an ion exchange me-thod[J]. Mater Sci Semicond Processing, 2016,41:233. 10Wang G, Qin W, Zhang D, et al. Enhanced photoluminescence of water soluble YVO4∶Ln3+(Ln=Eu, Dy, Sm, and Ce) nanocrystals by Ba2+doping[J]. J Phys Chem C,2008,112(44):17042. 11Li Keyan. Electronegativity scales in crystals and their applications[D]. Dalian: Dalian University of Technology, 2008(in Chinese). 李克艳. 晶体中的电负性标度及其应用[D]. 大连:大连理工大学,2008. 12Zhang Feng. Preparation and photoluminescent properties of Eu3+,Tb3+activated oxysalt-based luminescence materials[D]. Lanzhou: Lanzhou University, 2012(in Chinese). 张凤. Eu3+、Tb3+激活的几种含氧酸盐基发光材料的制备及其发光特性研究[D]. 兰州:兰州大学, 2012. 13Zhang Qi, Ma Yong, Deng Quan. Structural and optical properties of Sb-doped ZnO powders synthesized by hydrothermal method[J]. J Chongqing University of Technology: Nat Sci, 2012,26(8):61(in Chinese). 张起, 马勇, 邓泉. 水热法制备ZnO∶Sb粉体结构及光学性质[J]. 重庆理工大学学报:自然科学版, 2012,26(8):61. 14Fan Wenbo, Jiang Yuanru, Xu Ting. Synthesis, crystal structure and luminescent properties of Y, Pr and Tb-schiff base complexes[J]. Mater Rev: Res, 2015,29(6):15(in Chinese). 范文博, 江元汝, 徐婷. 稀土(Y、Pr、Tb)希夫碱配合物的合成、结构及荧光性质[J]. 材料导报:研究篇, 2015,29(6):15. 15Li X, Wang H, Guan L, et al. Influence of pH value on properties of YPO4∶Tb3+ phosphor by co-precipitation method[J]. J Rare Earths, 2015,33(4):346. 16Yan Yinglin, Wang Juan, Wang Liangliang. Influence of pH and CTAB on luminescent property of hydrothermally synthesized GdVO4∶Eu3+ phosphors[J]. Chin J Mater Res,2015(4):307(in Chinese). 燕映霖, 王娟, 王亮亮. CTAB浓度和反应液的pH值对水热合成GdVO4∶Eu3+荧光粉性能的影响[J]. 材料研究学报, 2015(4):307. 17Li G, Liu S, Chu Z, et al. Synthesis and photoluminescence of core-shell structured spherical SiO2@YPO4∶Tb3+ phosphors via sol-gel process[J]. J Lumin,2012,132(11):2961. 18Gu J, Zhong J, Liang H, et al. Competitive absorption of Eu3+ and Tb3+codoped in NaGd(PO3)4 phosphors[J]. Chem Phys Lett, 2014,592:261. 19Yang Liusai, Xie Aili, Yang Qintao. Influenced of hydrothermal and high temperature treatment on luminescence properties of BiPO4∶Tb3+ nanocrystals[J]. Chin J Mater Res,2016(2):156(in Chinese). 杨流赛, 谢爱理, 杨勤桃. 水热和高温烧结对BiPO4∶Tb3+纳米晶发光性能的影响[J]. 材料研究学报, 2016(2):156. 20Dou X, Zhao W, Song E, et al. Photoluminescence characterization and energy transfer of NaBa1-x-yPO4∶xCe3+, yTb3+ phosphors[J]. J Rare Earths, 2012,30(8):739. 21Su Ping, Li Bangxing. Theoretical analysis of spectra for Nd3+ ions in CsCdBr3 crystals[J]. J Chongqing University of Technology:Nat Sci,2015(3):2 (in Chinese). 苏萍, 李邦兴. 掺杂Nd3+离子CsCdBr3晶体光谱的理论分析[J]. 重庆理工大学学报:自然科学版, 2015(3):21. 22Liu Xueying, Yang Jinyu, He Hanwei. Synthesis and optical pro-perties of Tb3+ doped Gd2Sn2O7 nanophosphors[J]. Mater Sci Eng Powder Metall, 2014,19(6):978(in Chinese). 刘雪颖, 杨锦瑜, 何捍卫. Tb3+掺杂Gd2Sn2O7纳米荧光材料的制备与光学性能[J]. 粉末冶金材料科学与工程, 2014,19(6):978. 23Liu C, Hou D, Yan J, et al. Energy transfer and tunable luminescence of NaLa(PO3)4∶Tb3+/Eu3+under VUV and low-voltage electron beam excitation[J]. J Phys Chem C,2014,118(6):3220. 24Yuan C, Xie H, Cai H, et al. Synthesis and luminescent properties of a novel green-emitting Tb(Ⅲ) complex and the excellent thermal stability for application[J]. Opt Mater, 2016,54:170. 25Li Kaiyu, Wang Ruzhi, Qu Minghao. Downconversion materials preparation and the research of conversion efficiency in Pr3+,Yb3+co-doped YPO4[J]. Chin J Lumin,2012,33(5):486(in Chinese). 李开宇, 王如志, 曲铭浩. Pr3+,Yb3+共掺YPO4下转换材料的制备及其转光效率[J]. 发光学报, 2012,33(5):486. |
|
|
|