REVIEW PAPER |
|
|
|
|
|
Progress in Catalyst Support for Hydrogen Generation of Ammonia Borane |
SANG Wanlu, LI Lanan, GAO Ruoyuan, WANG Chenyang, YANG Xiaojing
|
Institute of Materials Science and Engineering, Hebei University of Technology,Tianjin 300130 |
|
|
Abstract Hydrogen is considered to be a clean energy source due to its high efficiency, power density and limited environmental impact. Chemical hydrogen storage materials require a high hydrogen storage capacity. Ammonia borane has been identified as an attractive candidate for hydrogen storage due to its high hydrogen content (19.6%) and stability under ordinary storage conditions. Catalyst is the core technology as ammonia borane is not easy to release hydrogen at room temperature without catalysts. Metal catalyst can significantly increase the rate of hydrolysis, which is the key factor affecting the hydrogen evolution of ammonia borane. However, metal catalyst particles are generally easy to become agglomerate and be oxidized. A variety of supporters have been chosen to disperse the catalyst, in order to leave more act positions on the catalysts which allows ammonia borane release hydrogen more quickly. Therefore, the catalytic effects of different catalyst supporters on hydrolysis of ammonia borane are discussed in this paper.
|
Published: 10 September 2017
Online: 2018-05-07
|
|
|
|
1 Liu W, Web C J, Gray E, et al. Review of hydrogen storage in AB alloys targeting stationary fuel cell applications[J]. Int J Hydrogen Energy,2016,41(5):3485. 2 Perathoner S, Centi G, Su D, et al. Turning perspective in pho-toelectrocatalytic cells for solar fuels[J]. ChemSusChem,2016,9(4):345. 3 Tapeinos I G, Koussios S, Groves R M,et al. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage[J]. Int J Hydrogen Energy,2016,41(5):3676. 4 Sakamoto J, Nakayama J, Nakarai T, et al. Effect of gasoline pool fire on liquid hydrogen storage tank in hybrid hydrogen-gasoline fue-ling station[J]. Int J Hydrogen Energy,2016,41(3):2096. 5 Xu W, Li Q, Huang M, et al. Design and analysis of liquid hydrogen storage tank for high-altitude long-endurance remotely-operated aircraft[J]. Int J Hydrogen Energy,2015,40(46):16578. 6 Heather C J, Thomas N H, Andrew S Weller, et al. The catalytic dehydrocoupling of amine-boranes and phosphine-boranes[J]. Topics Organometallic Chem,2015,49:153. 7 Fabien D, Giuseppe C, Marian C, et al. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells[J]. J Power Sources,2015,297:492. 8 Peng S G, Liu J C, Wang F Y, et al. An improved preparation of graphene supported ultrafine ruthenium (0) NPs: Very active and durable catalysts for H2 generation from methanolysis of ammonia borane[J]. Int J Hydrogen Energy,2015,40(3):10856. 9 Wang H L, Yan J M, Wang Z L, et al. One-step synthesis of Cu@FeNi core-shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2012,37(13):10229. 10 Yao Q L, Lu Z H, Wang Y Q, et al. Synergetic catalysis of non-noble bimetallic Cu-Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane[J].J Phys Chem C,2015,119(25):14167. 11 Hyung M J, Weon H S, Jung H P, et al. A metal-organic framework as a chemical guide to control hydrogen desorption pathways of ammonia borane[J]. Nanoscale,2014,6:6526. 12 Shao Y Y, Zhou W, Li X L, et al. Nanostructured carbon for energy storage and conversion[J]. Nano Energy,2012,1(12):195. 13 Wu Z J, Duan Y L, Ge S H, et al. Promoting hydrolysis of ammonia borane over multiwalled carbon nanotube-supported Ru catalysts via hydrogen spillover[J]. Catal Commun,2017,91:10. 14 Chandra M, Xu Q, et al. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources,2006,163(1):364. 15 Sourav B, Lisa R, Ankan P, et al. Mechanistic details of Ru-bispyridylborate complex catalyzed dehydrogenation of ammonia-borane: Role of the pendant boron ligand in catalysis[J]. ACS Catal,2016,6(7):4068. 16 Yang Xiaojing. Research on Pt-M (M = Ni, Co) catalysts for hydrolytic of ammonia borane[D]. Tianjin: Nankai University,2011(in Chinese). 杨晓婧. 氨硼烷水解放氢Pt基催化剂Pt-M (M = Ni, Co)的研究[D]. 天津:南开大学, 2011. 17 Yan J J, Liao J Y, Li H, et al. Magnetic field induced synthesis of amorphous CoB alloy nanowires as a highly active catalyst for hydrogen generation from ammonia borane[J]. Catal Commun,2016,84:124. 18 Bilge C F, Aysel K F. Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency[J]. Int J Hydrogen Energy,2016,41(34):15433. 19 Chandra M, Xu Q. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system[J]. J Power Sources,2006,159(2):855. 20 Gao Y, Yue Q Y, Xu S P, et al. Preparation and evaluation of adsorptive properties of micro-mesoporous activated carbon via sodium aluminate activation[J]. Chem Eng J,2015,274:76. 21 Akshay J, Rajasekhar B, et al. Production of high surface area mesoporous activated carbons from waste biomass using hydrogen pe-roxide-mediated hydrothermal treatment for adsorption applications[J]. Chem Eng J,2015,273:622. 22 Wen L, Zheng Z, Luo W, et al. Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. Chin Chem Lett,2015,26(11):1345. 23 Lai S W, Lin H L, Lin Y P, et al. Hydrolysis of ammonia borane catalyzed by an iron nickel alloy on an SBA-15 support[J]. Int J Hydrogen Energy,2013,38(11):4636. 24 Jinho A, Jeffrey R P, Aruna V, et al. Hydrazine-reduction of gra-phite- and graphene oxide[J]. Sci Direct,2011,49:3019. 25 Wang D W, Min Y G, Yu Y H, et al. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors[J]. Electrochim Acta,2014,141:271. 26 Yang X J, Li L L, Sang W L, et al. Boron nitride supported Ni na-noparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Alloys Compd,2017,693:642. 27 Li J, Xiao X, Xu X W, et al. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants[J]. Sci Reports,2013,3:2045. 28 Ovejero G, Sotelo J L, Romero M D, et al. Multiwalled carbon nanotubes for liquid-phase oxidation, functionalization, characterization, and catalytic activity[J]. Ind Eng Chem Res,2006,45:2206. 29 Porro S, Musso S, Vinante M, et al. Purification of carbon nanotubes grown by thermal CVD[J]. Sci Direct,2007,37:58. 30 Yang X J, Cheng F Y, Liang J, et al. Carbon-supported Ni1-x@Ptx(x= 0.32, 0.43, 0.60, 0.67, and 0.80) core-shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2011,36(3):1984. 31 陈军, 都晓玲, 陶占良, 等. 一种用于氨硼烷水解制氢的碳负载Ni3B复合催化剂: 中国, 103816906[P].2014-05-28. 32 Liang H Y, Chen G Z, et al. In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane[J]. Int J Hydrogen Ene-rgy,2012,37(23):17921. 33 Chou C C, Chen B H. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst[J]. J Power Sources,2015,293:343. 34 Yang Y W, Zhang F, Wang H L, et al. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater,2014,19(19):1. 35 卢章辉, 杨宇雯, 陈祥树,等.一种用于氨硼烷水解制氢的Ni-CeO2@graphene复合纳米催化剂及其制备方法: 中国, 103990465[P].2014-08-20. 36 Fan Y R, Li X J, He X C, et al. Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride[J]. Int J Hydrogen Energy,2014,39(35):19982. 37 Cao N, Luo W, Luo W, et al. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2013,38(27):11964. 38 Basua S, Brockmana A, Gagare P, et al. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis[J]. J Power Sources,2009,188(1):238. 39 Yang X J, Cheng F Y, Tao Z L, et al. Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core-Pt shell nanoparticles[J]. J Power Sources,2011,196(5):2785. 40 Yang L, Luo W, Cheng G E, et al. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. Appl Mater Interface,2013,5(16):8231. 41 Du Y S, Cao N, Yang L, et al. One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. New J Chem,2013,37(37):3035. 42 Xiong X, Zhou L Q, Yu G F, et al. Synthesis and catalytic perfor-mance of a novel RuCuNi/CNTs nanocomposite in hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2015,40(45):15521. 43 Hu L, Zheng B, Lai Z P, et al. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst[J]. Int J Hydrogen Energy,2014,39(35):20031. 44 Yang L, Cheng G, Su J, et al. In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methy-lamine borane[J]. J Mater Chem A,2013,1(1):10016. 45 Giovanni P R, Umit B D, Philippe M, et al. Facile synthesis by polyol method of a ruthenium catalyst supported on γ-Al2O3 for hydrolytic dehydrogenation of ammonia borane[J]. Catal Today,2011,170(1):85. 46 Yang K Z, Zhou L Q, Yu G F, et al. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2016,41(15):6300. 47 Wen L, Su J, Wu X J, et al. Ruthenium supported on MIL-96: An efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy,2014,39(30):17129. 48 Can H, Metin Ö. A facile synthesis of early monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Appl Catal B: Environmental,2012,125(3):304. 49 Serdar A, Pelin E, Saim Ö. Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: Insight to the nanoparticles formation and hydrogen evolution kinetics[J]. Appl Catal B: Environmental,2013,142-143:187. 50 Kohsuke M, Kohei M, Hiromi Y, et al. Ru and Ru-Ni Nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catal,2016,6(5):3128. 51 Cao N, Liu T, Su J, et al. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem,2014,38(9):4032. 52 Luo Y C, Liu Y H, Liu X Y, et al. Mesoporous silica supported cobalt catalysts for hydrogen generation in hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2013,38(18):7280. 53 Patel N, Fernandes R, Edla R, et al. Superior hydrogen production rate by catalytic hydrolysis of ammonia borane using Co-B nanoparticles supported over mesoporous silica particles[J]. Catal Commun,2012,23(5):39. 54 Akbayraka S, Tanyildizib S, Morkanb I, et al. Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2014,197(2):377. 55 Ayman Y, Robert M B, Mohamed H N, et al. A novel and chemical stable Co-B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex[J]. Int J Hydrogen Energy,2016,41(1):285. 56 Rakapa M, Kalua E E, Özkarb S, et al. Hydrogen generation from hydrolysis of ammonia-borane using Pd-PVB-TiO2 and Co-Ni-P/Pd-TiO2 under stirred conditions[J]. J Power Sources,2012,210(4):184. 57 Nirmala R, Navamathavan R, Mohamed E N, et al. Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2012,37(13):10036. 58 Özhava D, Özkar S. Rhodium(0) nanoparticles supported on nanosilica: Highly active andlong lived catalyst in hydrogen generation from the methanolysis of ammonia borane[J]. Appl Catal B: Environmental,2016,181:716. 59 Metin , Mazumder V, Özkar S, et al. Monodisperse nickel nano-particles and their catalysis in hydrolytic dehydrogenation of ammonia borane[J]. J Am Chem Soc,2010,132:1468. 60 卢章辉, 姚淇露, 陈祥树, 等. 一种用于氨硼烷和阱硼烷水解制氢的Cu@mSiO2核壳纳米催化剂及其制备方法:中国, 103949254[P].2014-07-30. 61 Durak H, Gulcan M, et al. Hydroxyapatite-nanosphere supported ruthenium(0) nanoparticle catalyst for hydrogen generation from ammonia-borane solution: Kinetic studies for nanoparticle formation and hydrogen evolution[J]. RSC Adv,2014,16(4):1. 62 Akbayrak S, Özkar S. Ruthenium(0) nanoparticles supported on xonotlite nanowire: A long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane[J]. Dalton Trans,2013,43(4):1797. |
|
|
|