REVIEW PAPER |
|
|
|
|
|
Technological Advances for the Preparation of Yttria Stabilized Zirconia Hollow Spherical Powders and Performance of the Sprayed Coatings |
ZHAO Qin1,2, MA Guozheng2, WANG Haidou2, LI Guolu1, CHEN Shuying2, LIU Ming2
|
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130; 2 National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072; |
|
|
Abstract Powder morphology is one of the main factors which affects the microstructure and performance of plasma sprayed thermal barrier coatings. Yttria stabilized zirconia (YSZ) hollow spherical powders (HOSP) combine the advantages of good prealloying of fused-crushed powders and flowability of agglomerated-sintered powders. The sprayed coatings made from YSZ HOSP achieve significantly improved heat insulation, thermal shock resistance and sintering resistance, and thus have become the promising candidate fot thermal barrier coatings with excellent comprehensive performance. The principle, merits and drawbacks of the YSZ HOSP preparation methods, including spray drying, plasma spheroidization and template method, are summarized according to the current situation of domestic and foreign researches. Meanwhile, the movement characteristics and spreading solidification behavior of HOSP molten droplet, the microstructure and performance of sprayed coatings are discussed. Finally, the unresolved issues and the future development trend of this field are proposed.
|
Published: 10 August 2017
Online: 2018-05-04
|
|
|
|
1 Evans A G, Clarke D R, Levi C G. The influence of oxides on the performance of advanced gas turbines [J]. J Eur Ceram Soc, 2008,28(7):1405.
2 Xing F, Kumar A, Huang Y, et al. Flameless combustion with li-quid fuel: A review focusing on fundamentals and gas turbine application [J]. Appl Energy,2017,193:28.
3 徐鹤山编著. 发动机叶片工程应用分析[M]. 北京:航空工业出版社.2011.
4 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science,2002,296(5566):280.
5 Zhou F, Wang Y, Wang L, et al. High temperature oxidation and insulation behavior of plasma-sprayed nanostructured thermal barrier coatings [J]. J Alloys Compd,2017,704:614.
6 Torigoe T, Okajima Y, Okada I, et al. Development of the advanced TBC for high efficiency gas turbine [C]∥THERMC 2016.Japan,2017:1980.
7 Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater Today,2005,8(6):22.
8 Kumar V, Balasubramanian B. Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications [J]. Particuology, 2016, 27:1.
9 Fauchais P, Vardelle M, Goutier S. Latest researches advances of plasma spraying: From splat to coating formation [J]. J Therm Spray Technol,2016,25:1.
10 Ning X J, Li C X, Li C J, et al. Effect of powder structure on microstructure and electrical properties of plasma-sprayed 4.5 mol% YSZ coating [J]. Vacuum,2006,80(11-12):1261.
11 Allen A J, Long G G, Boukari H, et al. Microstructural characte-rization studies to relate the properties of thermal-spray coatings to feedstock and spray conditions [J]. Surf Coat Technol,2001,146:544.
12 Li Fei, Li Yanhuai, Xu Kewei, et al. Research progress of the pre-paration of zirconia hollow sphere powder and the performance of its coating [J]. Rare Met Mater Eng,2014,43(12):3183(in Chinese).
李飞, 李雁淮, 徐可为, 等. 氧化锆空心球粉体制备及其涂层性能研究进展[J]. 稀有金属材料与工程,2014,43(12):3183.
13 唐逾, 陈东, 王兵, 等. 航空发动机用氧化锆喷涂粉末[C]∥第四届中国功能材料及其应用学术会议. 天津,2001:1699.
14 Bai Y, Zhao L, Tang J J, et al. Influence of original powders on the microstructure and properties of thermal barrier coatings deposited by supersonic atmospheric plasma spraying, part Ⅱ: Properties [J]. Ceram Int,2013,39(5):5113.
15 Zhang Xiaofeng,Zhou Kesong, et al . Properties of thermal barrier coatings made of different shapes of ZrO2-7wt%Y2O3 powders [J]. Rare Met Mater Eng,2015,44(6):1301(in Chinese).
16 Ercan B, Bowman K J, Trice R W, et al. Effect of initial powder morphology on thermal and mechanical properties of stand-alone plasma-sprayed 7 wt.% Y2O3-ZrO2 coatings [J]. Mater Sci Eng A,2006, s435-436(6):212.
17 Golman B, Julklang W. Simulation of exhaust gas heat recovery from a spray dryer [J]. Appl Therm Eng,2014,73(1):899.
18 Lukasiewicz S J. Spray-drying ceramic powders [J]. J Am Ceram Soc,1989,72(4):617.
19 Wang Aijuan, Lv Yupeng, Li Junming, et al. Fabrication of hydroxya-patite microspheres with different structure and related mechanism analysis [J]. J Chin Ceram Soc,2011,39(6):897(in Chinese).
王爱娟, 吕宇鹏, 李均明,等. 不同结构羟基磷灰石微球的制备及相关机理分析[J]. 硅酸盐学报,2011,39(6):897.
20 Sun R, Lu Y, Chen K. Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method [J]. Mater Sci Eng C,2009,29(4):1088.
21 Nandiyanto A B D, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges [J]. Adv Powder Technol,2011,22(1):1.
22 Mahdjoub H, Roy P, Filiatre C, et al. The effect of the slurry formulation upon the morphology of spray-dried yttria stabilised zirco-nia particles [J]. J Eur Ceram Soc,2003,23(10):1637.
23 Bertrand G, Roy P, Filiatre C, et al. Spray-dried ceramic powders: A quantitative correlation between slurry characteristics and shapes of the granules [J]. Chem Eng Sci,2005,60(1):95.
24 Walker W J, Reed J S, Verma S K. Influence of slurry parameters on the characteristics of spray-dried granules [J]. J Am Ceram Soc,2010,82(7):1711.
25 Shoulders W T, Bizarri G, Bourret E, et al. Influence of process parameters on the morphology of spray-dried BaCl2 powders [J]. J Am Ceram Soc,2016,99(1):20.
26 李飞, 高波, 高勇, 等. 一种等离子喷涂用低成本空心球形YSZ粉末的制备方法, CN104129991A[P].2014.
27 Bai Y, Zhao L, Wang Y, et al. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying [J]. J Alloys Compd,2015,632:794.
28 Vardelle M, Vardelle A, Fauchais P. Spray parameters and particle behavior relationships during plasma spraying [J]. J Therm Spray Technol,1993,2(1):79.
29 Roy P, Bertrand G, Coddet C. Spray drying and sintering of zirconia based hollow powders [J]. Powder Technol,2005,157(1):20.
30 Gaudon M, Djurado E, Menzler N H. Morphology and sintering behaviour of yttria stabilised zirconia(8-YSZ)powders synthesised by spray pyrolysis [J]. Ceram Int,2004,30(8):2295.
31 Longo F N, Bader Iii N F, Dorfman M R. Hollow sphere ceramic particles for abradable coatings: US, US4450184[P].1984.
32 Lu Chen. Preparation of high strength ceramic hollow spheres by thermal plasma [D]. Beijing: University of Chinese Academy of Sciences,2015(in Chinese).
陆晨. 热等离子体制备高强度陶瓷空心微球的研究[D]. 北京:中国科学院大学,2015.
33 Zhang Xiaofeng, Zhou Kesong, Chang Fa, et al. Yttria-stabilized-zirconia hollow spheres prepared by atmospheric plasma spray [J]. Particuology,2014,14(3):57.
34 Singh H, Sidhu B S, Puri D, et al. Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coa-tings—A review [J]. Mater Corros,2015,58(2):92.
35 Gulyaev I P. Production and modification of hollow powders in plasma under controlled pressure [J].J Phys: Conference Series, 2013,441:303.
36 Pravdic G, Gani M S J. The formation of hollow spherical ceramic oxide particles in a d.c. Plasma [J]. J Mater Sci,1996,31(13): 3487.
37 Solonenko O P, Gulyaev I P, Smirnov A V. Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles [J]. Tech Phys Lett,2008,34(12):1050.
38 Solonenko O P, Gulyaev I P, Smirnov A V. Thermal plasma processes for production of hollow spherical powders: Theory and experiment [J]. J Therm Sci Technol,2011,6(2):219.
39 Solonenko O P. Criterion conditions for the formation of hollow microspheres from plasma-treated agglomerated particles [J]. Thermophy Aeromech,2014,21(6):735.
40 Gulyaev I. Experience in plasma production of hollow ceramic microspheres with required wall thickness [J]. Ceram Int,2015, 41(1):101.
41 Yan Chunmei, Luo Yijing, Zhao Xiaopeng, et al. The preparation research of inorganic hollow nanospheres [J]. J Funct Mater, 2006,37(3):345(in Chinese).
严春美, 罗贻静, 赵晓鹏. 无机材料纳米空心球的制备方法研究进展[J]. 功能材料,2006,37(3):345.
42 Antonelli D M. Hollow ordered zirconia microcage formation by spherical micelle templating with chelating triol surfactants [J]. Microp Mesop Mater,1999,28(3):505.
43 Schäfer C G, Vowinkel S, Hellmann G P, et al. A polymer based and template-directed approach towards functional multidimensional micro-structured organic/inorganic hybrid materials [J]. J Mater Chem C,2014,2(37):7960.
44 Ge S, Zhu W, Shao Q. Fabrication and characterization of hollow zirconia microspheres using calcium Carbonate as template [J]. Zeitschrift Für Physikalische Chemie,2016,230(11):1617.
45 Li S, Wang C A, Li S. Hierarchically porous YSZ hollow spheres with ultralow thermal conductivity [J]. Mater Res Bull,2014, 57(23):79.
46 Liu K, Li S, Wang C A. Fabrication and characterization of ZrO2 hollow spheres [J]. Key Eng Mater,2012,512-515: 253.
47 Zhou Peng. Preparation and characterization of zirconia ceramic hollow shells [D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
周鹏. 二氧化锆陶瓷空心微球的制备工艺与表征[D]. 哈尔滨:哈尔滨工业大学,2009.
48 Mcpherson R. The relationship between the mechanism of formation, microstructure and properties of plasma-sprayed coatings [J]. Thin Solid Films,1981,83(3):297.
49 Elsebaei A, Heberlein J, Elshaer M, et al. Comparison of in-flight particle properties, splat formation, and coating microstructure for regular and nano-YSZ powders [J]. J Therm Spray Technol,2010,19(1):2.
50 Gulyaev I P, Solonenko O P. Modelling of the behavior of hollow ZrO2, particles in plasma jet with regard to their thermal expansion [J]. Thermophys Aeromech,2013,20(6):769.
51 Shinoda K, Murakami H. Splat morphology of yttria-stabilized zirconia droplet deposited via hybrid plasma spraying [J]. J Therm Spray Technol,2010,19(3):602.
52 Kumar A, Gu S, Kamnis S. Simulation of impact of a hollow droplet on a flat surface [J]. Appl Phys A,2012,109(1):101.
53 Kumar A, Gu S. Porous surfaces via impinging and solidifying molten hollow melt droplets on substrates [J]. Trans Indian Inst Met,2012,65(6):771.
54 Kumar A, Gu S, Tabbara H, et al. Study of impingement of hollow ZrO2, droplets onto a substrate [J]. Surf Coat Technol,2013,220(15):164.
55 Chi W, Sampath S, Wang H. Ambient and high-temperature thermal conductivity of thermal sprayed coatings [J]. J Therm Spray Technol,2006,15(4):773.
56 Chi W, Sampath S, Wang H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings [J]. J Am Ceram Soc,2008,91(8):2636.
57 Yang Tan, Longtin J P, Sanjay Sampath, et al. Effect of the star-ting microstructure on the thermal properties of as-sprayed and thermally exposed plasma-sprayed YSZ coatings [J]. J Am Ceram Soc,2009,92(3):710.
58 Bertrand G, Bertrand P, Roy P, et al. Low conductivity plasma sprayed thermal barrier coating using hollow PSZ spheres: Correlation between thermophysical properties and microstructure [J]. Surf Coat Technol,2008,202(10):1994.
59 Kulkarni A, Wang Z, Nakamura T, et al. Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings [J]. Acta Mater,2003,51(9):2457.
60 Tan Y, Srinivasan V, Nakamura T, et al. Optimizing compliance and thermal conductivity of plasma sprayed thermal barrier coatings via controlled powders and processing strategies [J]. J Therm Spray Technol,2012,21(5):950.
61 Liu Y, Nakamura T, Srinivasan V, et al. Non-linear elastic properties of plasma-sprayed zirconia coatings and associated relationships with processing conditions [J]. Acta Mater,2007,55(14):4667. |
|
|
|