REVIEW PAPER |
|
|
|
|
|
Progress in Application of Metal-organic Frameworks in Photocatalytic Reactions |
WANG Liping
|
College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011 |
|
|
Abstract Environmental problem and energy crisis are two important problems that human face today. Photocatalysis is considered to be one of the effective methods to solve environmental problem and energy crisis. Metal-organic frameworks (MOFs) are a new class of porous crystalline materials that are built from metal ion or metal cluster and organic ligand. Due to their high surface area, ordered pore structure, tunable pore size and rich active site, MOFs have been widely applied in gas storage and separation, he-terogeneous catalysis, semiconductors and biomimetic mineralization. Over the past decades, many researchers have tried to use MOFs as the photocatalysts for chemical reaction, and gained a number of outstanding achievements. Especially in recent years, the application of MOFs in photocatalysis has received more and more attention. In this work, MOFs as the photocatalysts for hydrogen production, CO2 reduction, alkylation reaction, oxidation and reduction of organic compounds, cross-dehydrogenative coupling reaction and removal of environmental pollutants are reviewed, and the development trend of MOFs photocatalysts are put forward.
|
Published: 10 July 2017
Online: 2018-05-04
|
|
|
|
1 Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37. 2 Rodriguez J, Puzenat E, Thivel P X. From solar photocatalysis to fuel-cell: A hydrogen supply chain[J]. J Environ Chem Eng,2016,4(3):3001. 3 Chattopadhyay A, Chatterjee P, Chakraborty T. Photo-oxidation of acetone to formic acid in synthetic air and its atmospheric implication[J]. J Phys Chem A,2015,119(29):8146. 4 Lester Y, Sharpless C M, Mamane H, et al. Production of photo-oxidants by dissolved organic matter during UV water treatment[J]. Environ Sci Technol,2013,47(20):11726. 5 Cremer T, Jensen S C, Friend C M. Enhanced photo-oxidation of formaldehyde on highly reduced o-TiO2(110)[J]. J Phys Chem C,2014,118(50):29242. 6 Eddaoud M, Kim J, Rosi N, et al. Systematic design pore and functionality in isoreticular MOFs and their application in methane sto-rage[J]. Nature,2002,295(5554):469. 7 Christian Serre, Franck Millange, Christelle Thouvenot, et al. Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids: MIL-53(Cr) or CrⅢ (OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x· H2Oy[J]. J Am Chem Soc,2002,124(45):13519. 8 Li H, Eddaoudi M, O′Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402(6759):276. 9 Mendoza-Cortes J L, Pascal T A, Goddard W A. Design of covalent organic frameworks for methane storage[J]. J Phys Chem A,2011,115(47):13852. 10 Fu J, Das S, Xing G, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. J Am Chem Soc,2016,138(24):7673. 11 Luo F, Yan C S, Dang L L, et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation[J]. J Am Chem Soc,2016,138(17):5678. 12 Hall E A, Redfern L R, Wang M H, et al. Lewis acid activation of a hydrogen bond donor metal-organic framework for catalysis[J]. ACS Catal,2016,6(5):3248. 13 Cao S L, Yue D M, Li X H, et al. Novel nano-/micro-biocatalyst: Soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents[J]. ACS Sustain Chem Eng,2016,4(6):3586. 14 Liu H, Xi F G, Sun W, et al. Amino- and sulfo-bifunctionalized metal-organic frameworks: One-pot tandem catalysis and the cataly-tic sites[J]. Inorg Chem,2016,55(12):5753. 15 Mon M, Ferrando-Soria J, Grancha T, et al. Selective gold recovery and catalysis in a highly flexible methionine-decorated metal-organic framework[J]. J Am Chem Soc,2016,138 (25):7864. 16 Sheberla D, Su L, Blood-Forsythe M A, et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue[J]. J Am Chem Soc,2014,136(25):8859. 17 Talin A A, Allendorf M D. Tunable electrical conductivity in metal-organic framework thin-film devices[J]. Science,2016,343(6166):66. 18 Jamali A, Tehrani A A, Shemirani F, et al. Lanthanide metal-organic frameworks as selective microporous materials for adsorption of heavy metal ions[J]. Dalton Trans,2016,45(22):9193. 19 Liang K, Ricco R, Dohterty C M, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromo-lecules[J]. Nat Commun,2014,6:1. 20 Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dio-xide capture from large anthropogenic point sources[J]. Cheminform,2010,41(6):796. 21 Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev,2011,112(2):724. 22 Zhuang C F, Liu J L, Dai W, et al. Synthesis and applications in catalysis of porphyrinic metal-organic frameworks[J].Prog Chem,2014,26(2):277(in Chinese). 庄长福, 刘建路, 戴文,等. 卟啉金属有机骨架材料的合成及其在催化反应中的应用[J]. 化学进展,2014,26(2):277. 23 Bordiga S, Lamberti C, Ricchiardi G, et al. Electronic and vibratio-nal properties of a MOF-5 metal-organic framework:ZnO quantum dot behaviour[J]. Chem Commun,2004, 20(20):2300. 24 Xamena F X L I, Corma A, Garcia H. Applications for metal-orga-nic frameworks (MOFs) as quantum dot semiconductors[J]. J Phys Chem C,2006,111(1):80. 25 Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J Am Chem Soc,2008, 130(42):13850. 26 Gomes S C, Luz I, Fx L I X, et al. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation[J]. Chemistry—A Eur J,2010, 16(36):11133. 27 Danhardi M, Serre C, Frot T, et al. A new photoactive crystalline highly porous titanium(Ⅵ) dicarboxylate[J]. J Am Chem Soc,2009,131(131):10857. 28 Reinsch H, Hinterholzinger F M, Jäker P, et al. Unexpected photoreactivity in a NO2-functionalized aluminum-MOF[J]. J Phys Chem C,2015,119(47):26401. 29 Sun D, Lin Y, Li Z. Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti)[J]. Appl Catal B:Environ,2015,164(164):428. 30 Laurier K G, Vermoortele F, Ameloot R, et al. Iron(3)-based me-tal-organic frameworks as visible light photocatalysts[J]. J Am Chem Soc,2013,135(39):14488. 31 Mercedes A, Esther C, Belén F, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry,2007,13(18):5106. 32 Lin C K, Zhao D, Gao W Y, et al. Tunability of band gaps in metal-organic frameworks[J]. Inorg Chem,2012,51(16):9039. 33 Fateeva A, Chater P A, Ireland C P, et al. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis[J]. Angew Chem Int Ed,2012,51(30):7440. 34 Xu H Q, Hu J H, Wang D K, et al. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-Hole separation via electron trap states[J]. J Am Chem Soc,2015,137(42):13440. 35 Johnson J A, Zhang X, Reeson T C, et al. Facile control of the charge density and photocatalytic activity of an anionic indium porphyrin framework via in situ metalation[J]. J Am Chem Soc,2014,136(45):15881. 36 Xie M H, Yang X L, Zou C, et al. A SnⅣ-porphyrin-based metal-organic framework for the selective photo-oxygenation of phenol and sulfides[J]. Inorg Chem,2011,50(12):5318. 37 Fu Y, Sun D, Chen Y, et al. An amine-functionalized titanium me-tal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J]. Angew Chem Int Ed,2012, 124(14):3364. 38 Wang D K, Huang R K, Liu W J, et al. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catal,2014,4(12):4254. 39 Shi L, Wang T, Zhang H, et al. An amine-functionalized Iron(Ⅲ) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction[J]. Adv Sci,2015,2(3):1. 40 Horiuchi Y, Toyao T, Saito M, et al. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(Ⅳ) metal-organic framework[J]. J Phys Chem C,2012,116 (39):20848. 41 Zhang Z M, Zhang T, Wang C, et al. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate[J]. J Am Chem Soc,2015,137 (9):3197. 42 Fei H H, Sampson M D, Lee Y, et al. Photocatalytic CO2 reduction to formate using a Mn(Ⅰ) molecular catalyst in a robust metal-organic framework[J]. Inorg Chem,2015,54(14):6821. 43 Pullen S, Fei H, Orthaber A, et al. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a me-tal-organic framework[J]. J Am Chem Soc,2013, 135(45):16997. 44 Wang C, Kraffik K E, Lin W B. Pt nanoparticles@photoactive me-tal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection[J]. J Am Chem Soc,2012,134 (17):7211. 45 Zheng W L, Gao H B, Tian B, et al. Fabrication of low adsorption energy Ni-Mo cluster cocatalyst in metal-organic frameworks for visible photocatalytic hydrogen evolution[J]. ACS Appl Mater Interfaces,2016,8(17):10808. 46 Shi D Y, He C, Qi B, et al. Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation[J]. Chem Sci, 2015,6(2):1035. 47 Liang R W, Shen L J, Jiang F F, et al. Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: Efficient visible-light photocatalysts[J]. ACS Appl Mater Interfaces,2015,7(18):9507. 48 Bala S, Bhattacharya S, Goswami A, et al. Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: Structural correlation with magnetic and photocatalytic activity[J]. Cryst Growth Des,2014,14(12):6391. 49 Abedi S, Morsli A. Ordered mesoporous metal-organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective ae-robic oxidation in sunlight irradiation[J]. ACS Catal,2014,4(5):1398. 50 Fuentescabrera M, Nicholson D M, Sumpter B G, et al. Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca)[J]. J Chem Phys,2005,123(12):903. 51 Shen L, Liang S, Wu W, et al. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(Ⅵ)[J]. Dalton Trans, 2013, 42(37):13649. 52 Tian J, Xu Z Y, Zhang D W, et al. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production[J]. Nat Commun, 2016,7(5):11580. 53 Berggren G, Adamska A, Lambertz C, et al. Biomimetic assembly and activation of [FeFe]-hydrogenases[J]. Nature,2013,499(7456):66. 54 Greening C, Berney M, Hards K, et al. A soil actinobacterium sca-venges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases.[J]. PNAS,2014, 111(11):4257. 55 Seigo S, Sonja V, Andreas G, et al. Iron-chromophore circular dichroism of [Fe]-hydrogenase: The conformational change required for H2 activation[J]. Angew Chem,2010,49(51):9917. 56 Felton G A, Vannucci A K, Chen J, et al. Hydrogen generation from weak acids: Electrochemical and computational studies of a diiron hydrogenase mimic[J]. J Am Chem Soc, 2007,129(41):12521. 57 Streich D, Astuti Y, Orlandi M, et al. High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site[J]. Chemistry,2010,16(1):60. 58 Feng Y A, Cheng C, Liu Z G, et al. Application of a Ni mercaptopyrimidine MOF as highly efficient catalyst for sunlight-driven hydrogen generation[J]. J Mater Chem A,2015,3(13):7163. 59 Patwardhan S, Schatz G C. Theoretical investigation of charge transfer in metal organic frameworks for electrochemical device applications[J]. J Phys Chem C,2015,119(43):24238. 60 Doherty M D, Grills D C, Fujita E. Synthesis of fluorinated ReCl(4,4′-R2-2,2′-bipyridine)(CO)3 complexes and their photophysical cha-racterization in CH3CN and supercritical CO2[J]. Inorg Chem,2009,48(5):1796. 61 Wang C, Xie Z G, Dekrafft K E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis [J]. J Am Chem Soc,2011,133(34):13445. 62 Behar D, Dhansekaran T, Neta P. Cobalt porphyrin catalyzed reduction of CO2. Radiation chemical, photochemical, and electrochemical studies[J]. J Phys Chem A,1998,102(17):2870. 63 Schneider J, Vuong K Q, Calladine J A, et al. Photochemistry and photophysics of a Pd(Ⅱ) metalloporphyrin: Re(I) tricarbonyl bipy-ridine molecular dyad and its activity toward the photoreduction of CO2 to CO[J]. Inorg Chem,2011,50 (23):11877. 64 Liu Y Y, Yang Y M, Sun Q L, et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework[J]. ACS Appl Mater Interfaces,2013,5(15):7654. 65 Takeda H, Koizumi H, Okamoto K, et al. Photocatalytic CO2 reduction using a Mn complex as a catalyst[J]. Chem Commun,2013,50(12):1491. 66 Shi D Y, He C, Sun W L, et al. A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C-H alkylation of aliphatic nitriles[J]. Chem Commun,2016,52(25):4714. 67 Liu L L, Tai X S, Liu M F, et al. Method of creating chiral metal-organic frameworks and its use in asymmetric catalysis[J]. Chem Ind Eng Prog,2015,34(4):997(in Chinese). 刘丽丽, 台夕市, 刘美芳,等. 构筑手性金属有机骨架的方法及其在不对称催化中的应用[J]. 化工进展,2015,34(4):997. 68 Wu P Y, He C, Wang J, et al. Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes[J]. J Am Chem Soc,2012,134(36):14991. 69 Chen C Y, Li Y, Xiao Y, et al. Advances in synthesis and application of sulfoxide compounds[J]. Chinese J Org Chem,2011,31(6):925. 70 Wang D K, Wang M T, Li Z H. Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J].ACS Catal,2015,5(11):6852. 71 Paraschiv C, Cucos A, Shova S, et al. New Zn(Ⅱ) coordination polymers constructed from amino-alcohols and aromatic dicarboxylic acids:Synthesis, structure, photocatalytic properties, and solid-state conversion to ZnO[J]. Cryst Growth Des,2015,15(2):799. 72 Wei H S, Liu X Y, Wang A Q, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nat Commun,2014,5(1):5634. 73 Cheng S F, Zhang H Y, Yu X L, et al. Photocatalytic reduction of nitro compounds using TiO2 photocatalyst by UV and Vis dye-sensitized systems[J]. Chinese J Chem,2011,29(3):399. 74 Jian S P, Li Y W. Ni@Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction[J]. Chinese J Catal,2016,37(1):91. 75 Deenadayalan M S, Sharma N, Verma P K, et al. Visible-light-assisted photocatalytic reduction of nitroaromatics by recyclable Ni(Ⅱ)-porphyrin metal-organic framework (MOF) at RT[J]. Inorg Chem,2016,55(11):5320. 76 Xu W Y, Zhu F H, Zhang L. Research progress in synthesis and applications of perylene bisimide derivatives[J]. Mater Rev:Rev,2010,24(11):79( in Chinese) 徐业伟, 朱方华, 张林. 苝酰亚胺衍生物的合成及其应用进展[J]. 材料导报:综述篇,2010,24(11):79. 77 Zeng L, Liu T, He C, et al. Organized aggregation makes insoluble perylene diimide efficient for the reduction of aryl halides via conse-cutive visible light-induced electron-transfer processes[J]. J Am Chem Soc,2016,138(12):3958. 78 Martinez R, Simon M O, Chevalier R, et al. C-C bond formation via C-H bond activation using an in situ-generated ruthenium catalyst[J]. J Am Chem Soc,2009,131(22):7887. 79 Zhang Y, Feng B N. Asymmetric catalytic carbon-carbon coupling reactions via cross-dehydrogenative coupling reactions[J]. Chinese J Org Chem,2014,34(12):2406. 80 Wu J L, Xiang S H, Zeng J, et al. Practical route to 2-quinolinones via a Pd-catalyzed C-H bond activation/C-C bond formation/cyclization cascade reaction[J]. Org Lett,2015,17(2):222. 81 Gutierrezbonet A, Juliahernandez F, Luis B D, et al. Pd-catalyzed C(sp3)-H functionalization/carbenoid insertion: All-carbon quaternary centers via multiple C-C bond formation[J]. J Am Chem Soc,2016,138(20):6384. 82 Zhang W Q, Li Q Y, Zhang Q, et al. Robust metal-organic framework containing benzoselenadiazole for highly efficient aerobic cross-dehydrogenative coupling reactions under visible light[J]. Inorg Chem,2016,55(3):1005. 83 Liu F, Fan F T, Lv Y C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J].CIESC J,2016,5(5):1635(in Chinese). 刘芳, 樊丰涛, 吕玉翠,等. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报,2016,5(5):1635. 84 Fu H R, Kang Y, Zhang J. Highly selective sorption of small hydrocarbons and photocatalytic properties of three metal-organic frameworks based on tris(4-(1H-imidazol-1-yl)phenyl)amine ligand[J]. Inorg Chem,2014,53(8):4209. 85 Tranchemontagne D J, Mendoza-Cortes J L, O′Keeffe M, et al. Se-condary building units, nets and bonding in the chemistry of metal-organic frameworks[J]. Chem Soc Rev,2009,40(29):1257. 86 Zhang C H, Ai L H, Jiang J. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of Rhodamine B under visible light[J]. Ind Eng Chem Res,2015,54(1):153. |
|
|
|