REVIEW PAPER |
|
|
|
|
|
Biomedical Properties and Applications of Graphene-based Materials |
ZHAN Shiping1,2, YAN Siqi1,2 , ZHAO Qicheng1,2, WANG Weijing1,2, LI Mingming1,2
|
1 College of Environmental & Chemical Engineering, Dalian University, Dalian 116622; 2 Chemical and Environmental Protection Engineering Technology Research Center of Liaoning Province, Dalian 116622 |
|
|
Abstract Due to their excellent physical and chemical properties, graphene-based materials have gained extensive researches and applications in recent years. The graphene-based materials and their biological properties are introduced. The effect of factors on toxicity of the graphene-based materials and prevention measures are discussed. The application of graphene-based materials in the bio-medical field, such as drug carrier, biosensor, photothermal therapy and tissue engineering materials are discussed. The further research and application of the graphene-based materials are proposed.
|
Published: 10 July 2017
Online: 2018-05-04
|
|
|
|
1 Thomas R G, Moon M, Lee S, et al. Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: In vitro and in vivo analysis [J]. Int J Biol Macromol,2015,72(1):510. 2 Geim A K. Status and prospects[J]. Science,2009,324(5934):1530. 3 Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy[J]. Small,2013,9(21):3593. 4 Akhavan O, Meidanchi A, Ghaderi E, et al. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer[J]. J Mater Chem B, 2014,2(21):3306. 5 Qian W H, Su J S. Research status of controlled release properties of functionalized graphene oxide [J]. J Shanghai Second Polytechnic University,2016,33(2):88(in Chinese). 钱文昊, 苏俭生. 功能化氧化石墨烯载药控释性能的研究现状[J]. 上海第二工业大学学报, 2016,33(2):88. 6 Moradi S, Akhavan O, Tayyebi A, et al. Magnetite/dextran-functionalized graphene oxide nanosheets for in-vivo positive contrast magnetic resonance imaging[J]. RSC Adv,2015,59(5):47529. 7 Fazaeli Y, Akhavan O, Rahighi R, et al. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures[J]. Mater Sci Eng C,2014,45:196. 8 Akhavan O, Ghaderi E, Shirazian S A, et al. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells[J]. Carbon,2016,97:71. 9 Akhavan O, Ghaderi E, Shirazian S A. Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors[J]. Colloids Surf B Biointerfaces,2015,126(126):313. 10 Akhavan O, Ghaderi E, Rahighi R, et al. Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels[J]. Carbon,2014,79(1):654. 11 Zhou C, Chen S H, et al. Research progress on the application of graphene in sensor [J]. Mater Rev,2014,28(S1):15(in Chinese). 周超, 陈思浩,等. 石墨烯在传感器中的应用研究进展[J]. 材料导报, 2014, 28(S1):15. 12 Hashemi E, Akhavan O, Shamsara M, et al. DNA and RNA extractions from eukaryotic and prokaryotic cells by graphene nanoplatelets[J]. RSC Adv, 2014,105(4):60720. 13 Akhavan O, Choobtashani M, Ghaderi E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation[J]. J Phys Chem C,2012,116(17):9653. 14 Qin J, Jiang L W, Yang C M, et al. Preparation and antibacterial properties of graphene oxide nano silver composite [J]. Environmental Chem,2016,35(3):445(in Chinese). 秦静, 姜力文, 杨春苗,等. 氧化石墨烯纳米银复合材料的制备及其抗菌性[J]. 环境化学,2016,35(3):445. 15 Akhavan O, Ghaderi E. Escherichia coli, bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner[J]. Carbon, 2012, 50(5):1853. 16 Gurunathan S, Han J W, Eppakayala V, et al. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach[J]. Colloids Surf B Biointerfaces, 2013, 102(2):772. 17 Kim H, Kim W J. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite[J]. Small,2014,10(1):117. 18 Barinov A, Malciogˇlu O B, Fabris S, et al. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functio-nal theory calculations[J]. J Phys Chem C,2009,113(21):9009. 19 Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Lett,2009,9(4):1593. 20 Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces[J]. J Am Chem Soc,2010,132(23):8180. 21 Guo F, Kim F, Han T H, et al. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases[J]. ACS Nano, 2011, 5(10):8019. 22 Kim F, Cote L J, Huang J. Graphene oxide: Surface activity and two-dimensional assembly[J]. Adv Mater,2010,22(17):1954. 23 Bagri A, Mattevi C, Acik M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nat Chem,2010,2(7):581. 24 Zhang H, Peng C, Yang J, et al. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake[J]. ACS Appl Mater Interfaces,2013,5(5):1761. 25 Zhang X, Yang R, Wang C, et al. Cell biocompatibility of functio-nalized graphene oxide[J]. Acta Phys-Chim Sin,2012,28(6):1520. 26 Sun T, Cui X, Hou Y, et al. Sduty on Functionalization and biocompatibility of graphene oxide [J]. Appl Chem Ind,2013,42(5):806(in Chinese). 孙彤,崔欣,侯雨,等. 氧化石墨烯的功能化及其生物相容性研究[J]. 应用化工,2013,42(5):806. 27 Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications[J]. Mater Today,2012,15(3):86. 28 Hu H, Yu J, Li Y, et al. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery[J]. J Biomedical Mater Res A, 2012, 100(1):141. 29 Zhao Yuan, Huang Weijiu.Research process on preparation and performance of graphene and its composite [J].J Chongqing Institute of Technology:Nat Sci,2011(7):64(in Chinese). 赵远,黄伟九.石墨烯及其复合材料的制备及性能研究进展[J].重庆理工大学学报:自然科学版,2011(7):64. 30 Yang X, Zhang X, Liu Z, et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J]. J Phys Chem C,2008,112(45):17554. 31 Kim S, Shi Y, Kim J Y, et al. Overcoming the barriers in micellar drug delivery: Loading efficiency, stability, and micelle-cell interaction[J]. Expert Opinion Drug Delivery,2010,7(1):49. 32 Sun W, Zhang N, Li A. Preparation and evaluation of N(3)-O-toluyl-fluorouracil-loaded liposomes[J]. Int J Pharmaceutics, 2008,353(1-2):243. 33 Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of graphene and its applications[J]. Prog Mater Sci, 2012, 57(7):1061. 34 Sanchez V C, Jachak A, Hurt R H, et al. Biological interactions of graphene-family nanomaterials—An interdisciplinary review[J]. Chem Res Toxicology,2012,25(1):15. 35 Xie G, Cheng J, Li Y, et al. Fluorescent graphene oxide composites synthesis and its biocompatibility study[J]. J Mater Chem,2012,22(18):9308. 36 Ruiz O N, Fernando K A S, Wang B, et al. Graphene oxide: A nonspecific enhancer of cellular growth[J]. ACS Nano,2011,5(10):8100. 37 Bussy C, Aliboucetta H, Kostarelos K. Safety considerations for graphene: Lessons learnt from carbon nanotubes[J]. Accounts Chem Res,2013,46(3):692. 38 Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101. 39 Chen J T, Fu Y J, An Q F, et al. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films[J]. Nanoscale, 2013, 5(19):9081. 40 Yue H, Wei W, Yue Z, et al. The role of the lateral dimension of graphene oxide in the regulation of cellular responses[J]. Biomate-rials,2012,33(16):4013. 41 Wang T T. Application of graphene nanocomposite materials in fluorescence confocal imaging analysis of anticancer drug delivery [D]. C hongqing:Southwestern University, 2015(in Chinese). 王婷婷. 石墨烯复合纳米材料用于抗癌药物递送的荧光共聚焦成像分析[D]. 重庆:西南大学, 2015. 42 Mao H Y, Laurent S, Chen W, et al. Graphene: Promises, facts, opportunities, and challenges in nanomedicine[J]. Chem Rev,2013,113(5):3407. 43 Kim H, Lee D, Kim J, et al. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide[J]. ACS Nano,2013,7(8):6735. 44 Zhang D, Zhou F F, Xing D. Targeted imaging and photothermal therapy of functionalized graphene oxide [J]. Sci Bull,2013,58 (7):586(in Chinese). 张达, 周非凡, 邢达. 功能化氧化石墨烯的靶向肿瘤成像与光热治疗[J]. 科学通报,2013,58(7):586. 45 Ma X, Tao H, Yang K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Res,2012,5(3):199. 46 Chowdhury I, Duch M C, Mansukhani N D, et al. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance[J]. Environ Sci Technol,2014,48(2):961. 47 Kiew S F, Kiew L V, Lee H B, et al. Assessing biocompatibility of graphene oxide-based nanocarriers: A review[J]. J Controlled Release,2016,226:217. 48 Valle E M M D, Galán M A, Carbonell R G. Drug delivery techno-logies: The way forward in the new decade[J]. Ind Eng Chem Res,2009,48(5):2475. 49 Kakran M, Sahoo N G, Bao H, et al. Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid[J]. Current Medicinal Chem,2011,18(29):4503. 50 Zhao X, Liu L, Li X, et al. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin[J]. Langmuir,2014,30(34):10419. 51 Warheit D B. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J]. Toxicological Sci,2004,77(1):117. 52 Li N, Zhang Q, Zhang Q Q, et al. Synthesis and biocompatibility of amphiphilic graphene oxide [J]. Chem J Chinese Universities,2013,34(1):50(in Chinese). 李宁, 张琦, 张庆庆,等. 双亲性氧化石墨烯的合成及生物相容性[J]. 高等学校化学学报,2013,34(1):50. 53 Schinwald A, Murphy F A, et al. Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties[J]. ACS Nano,2012,6(1):736. 54 Zhang Y, Ali S F, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells [J]. ACS Nano,2010,4(6):3181. 55 Chang Y, Yang S T, Liu J H, et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicology Lett,2011,200(3):201. 56 Liao K H, Lin Y S, Macosko C W, et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts[J]. ACS Appl Mater Interfaces,2011,3(7):2607. 57 Roy S, Soin N, Bajpai R, et al. Graphene oxide for electrochemical sensing applications[J]. J Mater Chem,2011,21(38):14725. 58 Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7):4317. 59 Shi X, Chang H, Chen S, et al. Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states[J]. Adv Funct Mater,2012,22(4):751. 60 Hu W, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide[J]. ACS Nano, 2011, 5(5):3693. 61 Shan C, Yang H, Han D, et al. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine[J]. Langmuir, 2009, 25(20):12030. 62 Wojtoniszak M, Chen X, Kalenczuk R J, et al. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide[J]. Colloids Surf B Biointerfaces, 2012, 89(1):79. 63 Singh S K, Singh M K, Nayak M K, et al. Thrombus inducing property of atomically thin graphene oxide sheets[J]. ACS Nano, 2011, 5(6):4987. 64 Yang K, Zhang S, Zhang G, et al. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Lett,2010,10(9):3318. 65 Chanankhan A, Szebeni J, Savay S, et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): Possible role in hypersensitivity reactions[J]. Annals Oncology, 2003, 14(9):1430. 66 Fan X, Peng W, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation[J]. Adv Mater,2008,20(23):4490. 67 Gao J, Liu F, Liu Y, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chem Mater,2010,22(7):2213. 68 Wang G, Qian F, Saltikov C W, et al. Microbial reduction of graphene oxide by Shewanella[J]. Nano Res,2011,4(6):563. 69 Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res,2008,1(3):203. 70 Moralesnarváez E, Merkoçi A. Graphene oxide as an optical biosen-sing platform[J]. Adv Mater,2012,24(25):3298. 71 Huang P J J, Liu J. Separation of short single- and double-stranded DNA based on their adsorption kinetics difference on graphene oxide[J]. Nanomaterials,2013,3(2):221. 72 Meng L, Yang X, Ren J, et al. Phototherapy: Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer′s disease [J]. Adv Mater,2012,24(13):1722. 73 Du D, Lin Y Y Y. Graphene-based materials for biosensing and bioimaging[J]. MRS Bull,2012,37(12):1290. 74 Bai H, Li C, Wang X, et al. A pH-sensitive graphene oxide compo-site hydrogel[J]. Chem Commun,2010,46(14):2376. 75 Liu Z, Robinson J T, Sun X, et al. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs[J]. J Am Chem Soc,2008,130(33):10876. 76 Zhou T, Zhou X, Xing D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier[J]. Biomaterials, 2014, 35(13):4185. 77 Wen H, Dong C, Dong H, et al. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery[J].Small,2012,8(5):760. 78 Tang Z, Wu H, Cort J R, et al. Constraint of DNA on functiona-lized graphene improves its biostability and specificity[J]. Small, 2010, 6(11):1205. 79 Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering[J]. J Controlled Release, 2013, 173(1):75. 80 Chen B, Liu M, Zhang L, et al. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector[J]. J Mater Chem,2011,21(21):7736. 81 Li J, Yang X Y. Application of novel carbon nanomaterials: Graphene and its derivatives in biosensors [J]. Prog Chem,2013,25(Z1):380(in Chinese). 李晶, 杨晓英. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013,25(Z1):380. 82 Liu J, Qiao Y, Guo C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technol,2012,114(3):275. 83 Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene[J]. Anal Chem,2009,81(6):2378. 84 Zhu L, Luo L, Wang Z. DNA electrochemical biosensor based on thionine-graphene nanocomposite[J]. Biosensors Bioelectron,2012,35(1):507. 85 Li J, Guo S, Zhai Y, et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film[J]. Anal Chim Acta,2009,649(2):196. 86 Fan J L. Research progress of graphene sensors [J]. Mater Rev:Rev,2012,26(4):31(in Chinese). 范军领. 石墨烯传感器的研究进展[J]. 材料导报:综述篇,2012,26(4):31. 87 Yang K, Feng L, Shi X, et al. Nano-graphene in biomedicine: The-ranostic applications[J]. Chem Soc Rev,2013,42(2):530. 88 Zhang W, Guo Z, Huang D, et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide[J]. Biomate-rials,2011,32(33):8555. 89 Yang K, Hu L, Ma X, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles[J]. Adv Mater,2012,24(14):1868. 90 Hu S H, Chen Y W, Hung W T, et al. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioi-maging and photothermal therapy monitored in situ[J]. Adv Mater,2012,24(13):1748. 91 Webber M J, Khan O F, Sydlik S A, et al. A perspective on the clinical translation of scaffolds for tissue engineering[J]. Annals Biomedical Eng,2015,43(3):641. 92 Tamayol A, Akbari M, Annabi N, et al. Fiber-based tissue engineering: Progress, challenges, and opportunities[J]. Biotechnol Adv,2013,31(5):669. 93 Cha C, Shin S R, Gao X, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide[J]. Small,2014,10(3):514. 94 Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue enginee-ring[J]. Nat Biotechnol,2005,23(1):47. 95 Shin S R, Aghaeigharehbolagh B, Dang T T, et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide[J]. Adv Mater,2013,25(44):6385. 96 Kalbacova M, Broz A, Kong J, et al. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells[J]. Carbon,2010,48(15):4323. 97 Zhou K, Thouas G A, Bernard C C, et al. Method to impart electro- and biofunctionality to neural scaffolds using graphene-polyelectrolyte multilayers[J]. ACS Appl Mater Interfaces,2012,4(26):4524. |
|
|
|