RESEARCH PAPER |
|
|
|
|
|
Synthesis of Nano-phase Composite Al-Sn Alloy by Reaction Ball Milling Process and Its Performance |
SONG Kaiqiang1,2, ZENG Meiqin1,2, ZHU Min1,2, HU Renzong1,2, LU Zhongchen2,3
|
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640; 2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640; 3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 |
|
|
Abstract Reaction ball milling process was used to prepare Al-SnO2-MgH2 alloy powders, then a high thermal stability nanocomposite Al-Sn alloy was obtained by a combination of cold pressing and sintering. The effect of reaction ball milling process on the microstructure and properties were investigated by XRD and SEM. The results show that the SnO2 in the MA Al-SnO2-MgH2 alloy powder, which was produced by a two steps method with the addition of MgH2, was almost deoxidized into monolithic Sn after sintering at 600 ℃. Meanwhile, the in situ formed Sn exhibits a typical dual-scale structure. In particular, the symbiotic formed Sn and Al2O3 were in nano-size and homogeneously distributed in the Al matrix, improving the hardness obviously and resulting in a significantly reduction of friction coefficient and wear volume.
|
Published: 25 June 2017
Online: 2018-05-08
|
|
|
|
1 Liu X,Zeng M Q,Zhu M,et al. Promoting the high load-carrying capability of Al-20wt%Sn bearing alloys through creating nanocompo-site structure by mechanical alloying[J]. Wear,2012,294-295:387. 2 Noskova N I, Vil′danova N F, Filippov Y I, et al. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys[J]. Phys Met Metall,2006,102(6):646. 3 Dwivedi D K. Adhesive wear behaviour of cast aluminium-silicon alloys: Overview[J]. Mater Des,2010,31(5):2517. 4 Miyajima T,Tanaka Y,Katsuki E H,et al. Friction and wear pro-perties of lead-free aluminum alloy bearing material with molybdenum disulfide layer by a reciprocating test[J]. Tribol Int,2013,59:17. 5 Liu X, Zeng M Q, Zhu M, et al. Wear behavior of Al-Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying and sintering[J].Wear,2008,265(11-12):1857. 6 Zhu M, Gao Y, Chung C Y, et al. Improvement of the wear beha-viour of Al-Pb alloys by mechanical alloying[J]. Wear,2000,242(1):47. 7 Zhu M, Zeng M Q, Gao Y, et al. Microstructure and wear properties of Al-Pb-Cu alloys prepared by mechanical alloying[J]. Wear,2002,253(7):832. 8 Kaneko J, Sugamata M, Bta L, et al. Aluminum-low melting metal alloys prepared by mechanical alloying with addition of oxide[J]. Key Eng Mater,2000,188:73. 9 Patel J, Morsi K. Effect of mechanical alloying on the microstructure and properties of Al-Sn-Mg alloy[J]. J Alloys Compd,2012,540:100. 10 Ye Xin, Lu Zhongchen, Zeng Meiqin, et al.Effect of Si addition concentration on the microstructure and wear properties of MA Al-12%Sn[J]. Trans Nonferrous Met Soc China,2014,24 (1):53(in Chinese). 叶新, 鲁忠臣, 曾美琴, 等. Si 添加量对机械合金化Al-12%Sn合金组织与摩擦性能的影响[J]. 中国有色金属学报,2014,24(1):53. 11 Sun P L, Wu S P, Chin T S. Melting point depression of tin nano-particles embedded in a stable alpha-alumina matrix fabricated by ball milling[J]. Mater Lett,2015,144:142. 12 Sun P L, Wu S P, Chang S C, et al. Microstructure and melting behavior of tin nanoparticles embedded in alumina matrix processed by ball milling[J]. Mater Sci Eng A,2014,600:59. 13 Liu Xin, Zeng Meiqin, Ma Ying, et al. Variation of microstructure and hardness of nanocomposite Al-Sn alloy during sintering[J]. Heat Treat Metals,2009(3):27(in Chinese). 刘辛, 曾美琴, 马迎, 等. 纳米复合 Al-Sn 合金烧结中的组织和硬度变化[J]. 金属热处理,2009(3):27. 14 Lu Z C, Zeng M Q, Gao Y, et al. Minimizing tribolayer damage by strength-ductility matching in dual-scale structured Al-Sn alloys: A mechanism for improving wear performance[J]. Wear,2013,304(1):162. 15 Lu Z C, Gao Y, Zeng M Q, et al. Improving wear performance of dual-scale Al-Sn alloys:The role of Mg addition in enhancing Sn distribution and tribolayer stability[J]. Wear,2014,309(1):216. 16 Lu Z C, Zeng M Q, Gao Y, et al. Improving wear performance of dual-scale Al-Sn alloys by adding nano-Si@Sn: Effects of Sn nanophase lubrication and nano-Si polishing[J]. Wear,2015,338:258. |
|
|
|