REVIEW PAPER |
|
|
|
|
|
Materials of Cu2ZnSnS4 (CZTS) Prepared by Sol-Gel Method:A Review |
HAN Gui, LU Jinhua, WANG Min, LI Danyang
|
College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002 |
|
|
Abstract A quaternary chalcogenide-based compound Cu2ZnSnS4 (CZTS) is a novel material for thin film solar cell, posses-sing kesterite structure, p-type conductivity, a band gap energy of about 1.5 eV and an absorption coefficient of higher than 104 cm-1, which match well with the solar spectrum. Based on the above reasons, CZTS thin film is expected to be a new material for thin film solar cell, which can lower the cost and be developed and utilized in large scale. The property and device structure of CZTS thin film solar cell are elaborated. In addition, the preparation of CZTS thin film by sol-gel method and the research progress in the corresponding device performance are also investigated in detail. Finally, the key strategies of this technique, as well as the effective improvement measure are pointed out, and the future study direction of CZTS thin film solar cells is proposed.
|
Published: 10 January 2017
Online: 2018-05-02
|
|
|
|
1 Katagiri H, Sasaguchi N, Hoshino S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Solar Energy Mater Solar Cells,1997,49(1-4):407. 2 Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells[J]. J Am Chem Soc,2009,131(33):11672. 3 Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv Energy Mater,2014,4(7):13014651. 4 Fan Yong, Qin Honglei, Mi Baoxiu, et al. Progress in the fabrication of Cu2ZnSnS4 thin film for solar cells[J]. Acta Chim Sinica,2014,72(6):643(in Chinese). 范勇,秦宏磊,密保秀,等.太阳能电池材料-铜锌锡硫化合物薄膜制备及器件应用研究进展[J]. 化学学报,2014,72(6):643. 5 Katagiri H, Jimbo K, Yamada S, et al. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique[J]. Appl Phys Exp,2008,1(4):041201. 6 Tanaka K, Oonuki M, Moritake N, et al. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing[J]. Solar Energy Mater Solar Cells,2009,93(5):583. 7 Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route[J]. Thin Solid Films,2009,517(7):2481. 8 Dai P C, Zhang Y H, Xue Y M, et al. Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum dot sensitized solar cell[J]. Mater Lett,2015,158(1):198. 9 Gecys P, Markauskas E, Gedvilas M, et al. Ultrashort pulsed laser induced material lift-off processing of CZTSe thin-film solar cells [J]. Solar Energy,2014,102(4):82. 10 Yoo H, Kim J H. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films[J]. Thin Solid Films,2010,518(22):6567. 11 Washio T, Shinji T, Tajima S, et al. 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD[J]. J Mater Chem,2012,22(9):4021. 12 Tunuguntla V, Chen W C, Shih P H, et al. A nontoxic solvent based sol-gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells[J]. J Mater Chem A,2015,3(29):15324. 13 Ahmed S, Reuter K B, Gunawan O, et al. A high efficiency electrodeposited Cu2ZnSnS4 solar cell[J]. Adv Energy Mater,2012,2(2):253. 14 Zhou Z H, Wang Y Y, Xu D, et al. Fabrication of Cu2ZnSnS4 screen printed layers for solar cells[J]. Solar Energy Mater Solar Cells,2010,94(12):2042. 15 Sun Kaiwen, Su Zhenghua, Han Zili, et al. Fabrication of flexible Cu2ZnSnS4(CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method[J]. Acta Phys Sin,2014,63(1):0188011(in Chinese). 孙凯文,苏正华,韩自力,等.连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[J].物理学报,2014,63(1):0188011. 16 Nguyen T H, Septina W, Fujikawa S, et al. Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique[J]. RSC Adv,2015,5(95):77565. 17 Nandur A, White B. Growth of Cu2ZnSnS4(CZTS) by pulsed laser deposition for thin film photovoltaic absorber material[C]// Phenomenology of Current-induced Spin-orbit Torques: APS March Meeting. Denver, Colorado:Bulletin of the American Physical Socie-ty, 2014: F24.003. 18 Shin B, Gunawan O, Zhu Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog Photovolt: Res Appl,2013,21(1):72. 19 Leitao J P, Santos N M, Fernandes P A, et al. Study of optical and structural properties of Cu2ZnSnS4 thin films[J]. Thin Solid Films,2011,519(21):7390. 20 Xu Jiaxiong, Yao Ruohe. Investigation of the photovoltaic perfor-mance of n-ZnO∶Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell[J]. Acta Phys Sin,2012,61(18):1873041(in Chinese). 许佳雄,姚若河.n-ZnO∶Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析[J].物理学报,2012,61(18):1873041. 21 Ge J, Chu J H, Jiang J C, et al. Characteristics of in-substituted CZTS thin film and bifacial solar cell[J]. ACS Appl Mater Int,2014,6(23):21118. 22 若木守明.光学材料手册[M].北京:化学工业出版社,2010:261. 23 Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics[J]. J Am Chem Soc,2009,131(35):12554. 24 Scragg J J. Copper zinc tin sulfide thin films for photovoltaics: Synthesis and characterisation by electrochemical methods[D]. UK: University of Bath; Springer,2011. 25 Salas-Villasenor A L, Mejia I, Sotelo-Lerma M, et al. Performance and stability of solution-based cadmium sulfide thin film transistors: Role of CdS cluster size and film composition[J]. Appl Phys Lett,2012,101(26):2621031. 26 Sahay P P, Nath R K, Tewari S. Optical properties of thermally evaporated CdS thin films[J]. Cryst Res Technol,2007,42(3):275. 27 Cortes A, Gomez H, Marotti R E, et al. Grain size dependence of the bandgap in chemical bath deposited CdS thin films[J]. Solar Energy Mater Solar Cells,2004,82(1-2):21. 28 Shirakata S, Ohkubo K, Ishii Y, et al. Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells[J]. Solar Energy Mater Solar Cells,2009,93(6-7):988. 29 Ullrich B, Sakai H, Segawa Y. Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition[J]. Thin Solid Films,2001,385(1):220. 30 Sasikala G, Dhanasekaran R, Subramanian C. Electrodeposition and optical characterisation of CdS thin films on ITO-coated glass[J]. Thin Solid Films,1997,302(1-2):71. 31 Detlev R, Stefan G, Salvador B, et al. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation[J]. Appl Optics,2002,41(16):3196. 32 Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors[J]. Solar Energy Mater Solar Cells,2007,91(13):1199. 33 黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005:55. 34 Wang Juan, Li Chen, Xu Bo. Basic principle, advance and current application situation of sol-gel method[J]. Chem Ind Eng,2009,26(3):273(in Chinese). 王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状[J].化学工业与工程,2009,26(3):273. 35 Mitzi D B, Todorov T K, Gunawan O, et al. Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices[C]//35th IEEE Photovoltaic Specialists Conference(PVSC). Honolulu, Hawaii, USA: IEEE,2010:000640. 36 Barkhouse D A R, Gunawan O, Gokmen T, et al. Device characte-ristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Prog Photovolt,2012,20(1):6. 37 Guo Q J, Ford G M, Yang W C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals[J]. J Am Chem Soc,2010,132(49):17384. 38 Fischereder A, Rath T, Haas W, et al. Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide[J]. Chem Mater,2010,22(11):3399. 39 Tanaka K, Fukui Y, Moritake N, et al. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency[J]. Solar Energy Mater Solar Cells,2011,95(3):838. 40 Maeda K, Tanaka K, Fukui Y, et al. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol-gel sulfurization[J]. Solar Energy Mater Solar Cells,2011,95(10):2855. 41 Ki W,Hillhouse H W.Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Adv Energy Mater,2011,1(5):732. 42 Todorov T, Gunawan O, Chey S J, et al. Progress towards marke-table earth-abundant chalcogenide solar cells[J]. Thin Solid Films,2011,519(21):7378. 43 Su Z, Yan C, Tang D, et al. Fabrication of Cu2ZnSnS4 nanowires and nanotubes based on AAO templates[J]. Cryst Eng Comm,2012,14(3):782. 44 Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells[J]. Energy Environ Sci,2012,5(1):5340. 45 Yang W, Duan H S, Bob B, et al. Novel solution processing of high-efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells[J]. Adv Mater,2012,24(47):6323. 46 Iiari G M, Fella C M, Ziegler C, et al. Cu2ZnSnSe4 solar cell absorbers spin-coated from amine-containing ether solutions[J]. Solar Energy Mater Solar Cells,2012,104:125. 47 Wada T, Kohara N, Nishiwaki S, et al. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells[J]. Thin Solid Films,2001,387(1):118. 48 Cho J W, Ismail A, Park S J, et al. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell application[J]. ACS Appl Mater Interfaces,2013,5(10):4162. 49 Park H, Hwang Y H, Bae B S. Sol-gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization[J]. J Sol-Gel Sci Techn,2013,65(1):23. 50 Kahraman S, Cetinkaya S, Podlogar M, et al. Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films[J]. Ceram Int,2013,39(8):9285. 51 Wang G, Zhao W G, Cui Y, et al. Fabrication of a Cu2ZnSn(S,Se)4 photovoltaic device by a low-toxicity ethanol solution process[J]. ACS Appl Mater Interfaces,2013,5(20):10042. 52 Todorov T K, Tang J, Bag S, et al. Beyond 11% efficiency: Cha-racteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells[J]. Adv Energy Mater,2013,3(1):34. 53 Zhang K Z, Tao J H, He J, et al. Composition control in Cu2Zn-SnS4 thin films by a sol-gel technique without sulfurization[J]. J Mater Sci:Mater Electron,2014,25(6):2703. 54 Tong Z F, Yan C, Su Z H, et al. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin films solar cells[J]. Appl Phys Lett,2014,105(22):2239031. 55 Katagiri H, Jimbo K, Tahara M, et al. The influence of the composition ratio on CZTS-based thin film solar cells[C] // MRS Procee-dings. San Francisco: Materials Research Society,2009:1165. 56 Su Z H, Sun K W, Han Z L, et al. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route[J]. J Mater Chem A,2014,2(2):500. 57 Zhang K, Su Z H, Zhao L B, et al. Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization[J]. Appl Phys Lett,2014,104(14):1411011. 58 Kahraman S, etinkaya S, etinkara H A, et al. Effects of diethanolamine on sol-gel-processed Cu2ZnSnS4 photovoltaic absorber thin films[J]. Mater Res Bull,2014,50:165. 59 Zhao W, Wang G, Tian Q, et al. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source[J]. ACS Appl Mater Interfaces,2014,6(15):12650. 60 Li J V, Kuciauskas D, Yong M R, et al. Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells[J]. Appl Phys Lett,2013,102(16):1639051. 61 Wang J, Zhang P, Song X F, et al. Sol-gel nanocasting synthesis of kesterite Cu2ZnSnS4 nanorods[J]. RSC Adv,2015,5(2):1220. 62 Su Z H, Tan J M R, Li X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Adv Energy Mater,2015,5(19):15006821. 63 Agawane G, Shin S W, Vanalakar S A, et al. Synthesis of simple, low cost and benign sol-gel Cu2ZnSnS4 thin films: Influence of diffe-rent annealing atmospheres[J]. J Mater Sci-Mater El,2015,26(3):1900. 64 Agawane G L, Kamble A S, Vanalakar S A, et al. Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol-gel technique[J]. Mater Lett,2015,158:58. 65 Zhang R H, Szczepaniak S M, Carter N J, et al. A versatile solution route to efficient Cu2ZnSn(S,Se)4 thin-film solar cells[J]. Chem Mater,2015,27(6):2114. 66 Werner M, Sutter-Fella C M, Romanyuk Y E, et al. 8.3% efficient Cu2ZnSn(S,Se)4 solar cells processed from sodium-containing solution precursors in a closed reactor[J]. Thin Solid Films,2015,582:308. |
|
|
|