| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Rare Earth Element Doping in Improving the Performance of Thermoelectric Materials |
| WANG Qingqing1,*, LI Di2,*, ZHOU Jiafeng1, MENG Weili1, ZHU Ankang1, SHAO Jing1
|
1 School of Mathematics and Physics, Bengbu University, Bengbu 233030, Anhui, China 2 Institute of Solid State Physics, University of Chinese Academy of Sciences, Hefei 230031, China |
|
|
|
|
Abstract Thermoelectric materials are new energy materials capable of converting thermal energy into electrical energy, offering a wide array of promi-sing applications. Thermoelectric performance is characterized by the figure of merit (ZT), which is inherently limited by the interdependent electrical conductivity, thermal conductivity, and Seebeck coefficient. Each of these properties is influenced by the internal microstructure of the material, the transport behavior of charge carriers, and phonon scattering. Numerous studies have demonstrated that trace element doping is an effective strategy for enhancing the thermoelectric performance. This article reviews the applications and microscopic mechanisms of doping with rare earth elements to improve the properties of various thermoelectric materials, including Mg3Sb2-based Zintl phases, CoSb3-based skutterudites, BiCuSeO-based oxides, MgAgSb-based Half-Heusler alloys, SrTiO3-based perovskites, and Zn4Sb3-based thermoelectric systems. Owing to their distinctive 4f orbital electrons, rare earth elements enable carrier concentration optimization, strong phonon scattering, structural regulation, electroacoustic decoupling, and band convergence. These mechanisms collectively contribute to enhanced thermoelectric properties, thereby providing a theoretical foundation for further research and practical applications in the field.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Ba Q, Liu Z Y, Li Z, et al. Materials Reports, 2025, 39(15), 24050140 (in Chinese). 巴倩, 刘志愿, 李周, 等.材料导报, 2025, 39(15), 24050140. 2 Hao M. Optimizing thermoelectric performance of AgSbTe2 based materials by band and interface engineering. Master’s Thesis, Henan University, China, 2024(in Chinese). 郝敏. 能带及界面工程优化AgSbTe2基材料的热电性能. 硕士学位论文, 河南大学, 2024. 3 Shenoy U S, Goutham K D, Bhat D K. Materials Advances, 2022, 3(14), 5941. 4 Pei Y, Shi X, Lalonde A, et al. Nature, 2011, 473(7345), 66. 5 Hong M, Chen Z G, Yang L, et al. Advanced Materials, 2018, 30(11), 1705942. 6 Wu L, Li X, Wang S, et al. NPG Asia Materials, 2017, 9(1), 343. 7 Tan X, Liu Y, Liu R, et al. Advanced Energy Materials, 2019, 9(31), 1900354. 8 Singh N K, Bathula S, Gahtori B, et al. Journal of Alloys and Compounds, 2016, 668, 152. 9 Pei Y, May A F, Snyder G J. Advanced Energy Materials, 2011, 1(2), 291. 10 Jang H, Park J H, Lee H S, et al. Advanced Science, 2021, 8(20), 2100895. 11 Tan G, Zhao L D, Shi F, et al. Journal of the American Chemical Society, 2014, 136(19), 7006. 12 Zhang Q. Investigation on the thermoelectric performance optimization and devices fabrication of tellurides. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2023(in Chinese). 张强. 碲化物热电材料性能优化与器件制备研究. 博士学位论文, 中国科学院大学, 2023. 13 Snyder G J, Toberer E S. Nature Materials, 2008, 7(2), 105. 14 Pei Y, Shi X, Lalonde A, et al. Nature, 2011, 473(7345), 66. 15 Fu T, Yue X, Wu H, et al. Journal of Materiomics, 2016, 2(2), 141. 16 Zhu T, Fu C, Xie H, et al. Advanced Energy Materials, 2015, 5(19), 1500588. 17 Tang Q, Jiang B, Wang K, et al. Joule, 2024, 8(6), 1641. 18 Zhao L D, Lo S H, Zhang Y. et al. Nature, 2014, 508(7496), 373. 19 Zhong B, Zhang Y, Li W, et al. Applied Physics Letters, 2014, 105(12), 123902. 20 Liu H, Yuan X, Lu P, et al. Advanced Materials, 2013, 25(45), 6607. 21 Zhang Q, Yuan M, Pang K, et al. Advanced Materials, 2023, 35(21), 2300338. 22 Yang J, Zhang H, Hu N, et al. Materials Today Nano, 2025, 29, 100590. 23 Li H, Liu Y, Liu S, et al. ACS Applied Materials & Interfaces, 2024, 16(14), 17598. 24 Li H, Zhang H, Zhu J, et al. Journal of Colloid and Interface Science, 2025, 698, 138057. 25 Xu C, Yang S, Li P, et al. Composites Communications, 2022, 32, 101179. 26 Liu S, Li H, Li P, et al. CCS Chemistry, 2021, 3(10), 2547. 27 Wang D, Ding J, Ma Y, et al. Nature, 2024, 632(8025), 528. 28 Chen X, Wu H, Cui J, et al. Nano Energy, 2018, 52, 246. 29 Bhardwaj A, Misra D K. RSC Advances, 2014, 4(65), 34552. 30 Li J W, Han Z, Yu J, et al. Nature Communications, 2023, 14(1), 7428. 31 Huang S, Wang Z, Yu H, et al. Nano Energy, 2019, 62, 212. 32 Liu H. Influence of rare earth element doping on the properties of n-type Mg3Sb2-based thermoelectric materials. Master’s Thesis, Xihua University, China, 2024(in Chinese). 刘行. 稀土元素掺杂对n型Mg3Sb2基热电材料性能的影响研究. 硕士学位论文, 西华大学, 2024. 33 Kang Z P. Modulating thermoelectric properties of Mg3Sb2 based materials by optimizing carrier concentration and scattering mechanism. Master’s Thesis, Taiyuan University of Technology, China, 2023(in Chinese). 康泽鹏. 优化载流子浓度与散射机制调控Mg3Sb2基材料的热电性能. 硕士学位论文, 太原理工大学, 2023. 34 Li J. Research on thermoelectric transport properties of n-type Mg3Sb2-based Zintl system based on defect engineering and strain engineering. Ph. D. Thesis, China University of Petroleum, China, 2021(in Chinese). 李娟. N型Mg3Sb2基Zintl相体系基于缺陷工程和应变工程的热电输运性质研究. 博士学位论文, 中国石油大学, 2021. 35 Li J. Thermoelectric properties of p-type Mg3Sb2-based alloys. Master’s Thesis, Harbin Institute of Technology, China, 2024(in Chinese). 李娟. P型Mg3Sb2基合金的热电性能研究. 硕士学位论文, 哈尔滨工业大学, 2024. 36 Liu Z Y, Zhu J L, Tong X, et al. Journal of Advanced Ceramics, 2020, 9(6), 647. 37 Nolas G S, Kaeser M, Littleton R T, et al. Applied Physics Letters, 2000, 77(12), 1855. 38 Wang X. Pore constructing and thermoelectric performance optimizing of Yb-filled CoSb3-based Skutterudite. Master’s Thesis, Dalian Jiaotong University, China, 2024(in Chinese). 王鑫. Yb填充CoSb3基方钴矿孔洞构筑与热电性能优化. 硕士学位论文, 大连交通大学, 2024. 39 Lu Q M, Zhang J X, Zhang X, et al. Journal of Applied Physics, 2005, 98(10), 1665. 40 Xu J S. Property optimization of p-type rare-earth filled skutterudite thermoelectric materials. Master’s Thesis, Zhejiang University, China, 2014(in Chinese). 徐荆舒. p型方钴矿基热电材料的混合稀土填充及性能优化. 硕士学位论文, 浙江大学, 2014. 41 Rogl G, Grytsiv A, Rogl P, et al. Acta Materialia, 2014, 63, 30. 42 Yin Z, Zhang H, Wang Y, et al. Advanced Energy Materials, 2025, 15(8), 2403174. 43 Zhou Z, Huang Y, Wei B. et al. Nature Communications, 2023, 14(1), 2410. 44 Zhang X Y. Effects of variable-valence elements Eu-/Sm- doping on the thermoelectric performance of BiCuSeO. Master’s Thesis, Dalian University of Technology, China, 2020(in Chinese). 张校影. 变价稀土元素Eu、Sm掺杂对BiCuSeO热电性能的影响. 硕士学位论文, 大连理工大学, 2020. 45 Feng B. Optimization of electrial/thermal transporting properties of BiCuSeO based thermoelectric materials. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2020(in Chinese). 冯波. BiCuSeO基材料电热输运性能优化. 博士学位论文, 武汉科技大学, 2020. 46 Yin Z X. Study on doping, composite, and thermoelectric properties of BiCuSeO materials modulated by high pressure. Master’s Thesis, Changchun University of Science and Technology, China, 2023(in Chinese). 音展翔. 高压下BiCuSeO材料的掺杂、复合及其热电性能研究. 硕士学位论文, 长春理工大学, 2023. 47 Li J L. Optimizing synergistically the microstructure and the thermoelectric properties of BiCuSeO via doping with the rare-earth variable-valence element Yb. Master’s Thesis, Dalian University of Technology, China, 2018(in Chinese). 李金玲. 变价稀土元素Yb掺杂协同优化BiCuSeO微结构及热电性能. 硕士学位论文, 大连理工大学, 2018. 48 Gao C H. Experimental study on the effect of magnetic ion doping on the thermoelectric properties of BiCuSeO. Master’s Thesis, Shandong University of Technology, China, 2022(in Chinese). 高晨浩. 磁性离子掺杂对BiCuSeO热电性能影响的实验研究. 硕士学位论文, 山东理工大学, 2022. 49 Kipkham M J, Santos A M D, Rawn C J, et al. Physical Review B, 2012, 85(14), 4506. 50 Zheng Y, Liu C, Miao L, et al. Nano Energy, 2019, 59, 311. 51 Ying P, Liu X, Fu C, et al. Chemistry of Materials, 2015, 27(3), 909. 52 Zhao H, Sui J, Tang Z, et al. Nano Energy, 2014, 7, 97. 53 Sui J, Shuai J, Lan Y, et al. Acta Materialia, 2015, 87, 266. 54 Shuai J, Kim H S, Lan Y, et al. Nano Energy, 2015, 11, 640. 55 Liu Z, Zhang Y, Mao J, et al. Acta Materialia, 2017, 128, 227. 56 Qiu F H. Study on preparation of MgAgSb alloy materials and optimization strategy of thermoelectric properties at room temperature. Master’s Thesis, Guangxi University, China, 2024(in Chinese). 丘方虹. MgAgSb基合金制备及近室温热电性能优化策略研究. 硕士学位论文, 广西大学, 2024. 57 Sui R Q. Preparation and performance optimization of α-MgAgSb room-temperature thermoelectric materials. Master’s Thesis, Xihua University, China, 2020(in Chinese). 睢润庆. α-MgAgSb室温热电材料的制备及性能调控研究. 硕士学位论文, 西华大学, 2020. 58 Muta H, Kurosaki K, Yamanaka S. Journal of Alloys and Compounds, 2005, 392(1-2), 306. 59 Muta H, Kurosaki K, Yamanaka S. Journal of Alloys and Compounds, 2003, 350(1-2), 292. 60 Liu J, Wang C L, Peng H, et al. Journal of Electronic Materials, 2012, 41(11), 3073. 61 Roy P, Pal V, Maiti T. Ceramics International, 2017, 43(15), 12809. 62 Zheng Y, Zhang Q, Shi C, et al. Nature Communications, 2024, 15(1), 7650. 63 Wang H C, Wang C L, Su W B, et al. Journal of the American Ceramic Society, 2011, 94(3), 838. 64 Liu J, Wang C L, Su W B, et al. Ceramics Journal of Alloys and Compounds, 2010, 492(1-2), 54. 65 Liu D Q. Improvement of thermoelectric properties for SrTiO3 based materials via multi-element codoping. Ph. D. Thesis, Dalian University of Technology, China, 2020(in Chinese). 刘达权. SrTiO3基热电材料的多元素掺杂改性研究. 博士学位论文, 大连理工大学, 2020. 66 Cao Z Q. The investigation of transport and thermoelectrical properties of rare earth Sm doped SrTiO3 system. Master’s Thesis, Harbin Institute of Technology, China, 2010(in Chinese). 曹志群. 稀土元素Sm掺杂SrTiO3输运以及热电性能的研究. 硕士学位论文, 哈尔滨工业大学, 2010. 67 Wu H J, Wei P C, Su H Y, et al. ACS Applied Energy Materials, 2019, 2(10), 7564. 68 Yin H, Iversen B B. Science of Advanced Materials, 2011, 3(4), 592. 69 Cui J L, Mao L D, Chen D Y, et al. Current Applied Physics, 2009, 9(3), 713. 70 Tang D, Zhao W, Yu J, et al. Journal of Alloys and Compounds, 2014, 601, 50. 71 Liu F, Qin X Y, Xin H X. Journal of Physics D Applied Physics, 2007, 40(24), 7811. 72 Wang Q Q, Qin X Y. Procedia Engineering, 2012, 27, 77. 73 Pan L, Qin X Y, Liu M, et al. Journal of Alloys and Compounds, 2010, 489(1), 228. 74 Song L, Blichfeld A B, Zhang J, et al. Journal of Materials Chemistry A, 2018, 6(9), 4079. 75 Qin X Y, Liu M, Pan L, et al. Journal of Applied Physics, 2011, 109(3), 033714. 76 Pan L, Qin X Y, Liu M. Solid State Sciences, 2010, 12, 257. 77 Zhou L, Li W, Jiang J, et al. Journal of Alloys and Compounds, 2010, 503(2), 464. 78 Li D, Qin X Y. Intermetallics, 2011, 19(11), 1651. 79 Wang Q Q, Qin X Y, Li D, et al. Journal of Applied Physics, 2013, 113(12), 124901. 80 Wang Q Q, Qin X Y, Li D, et al. Applied Physics Letters, 2013, 102(15), 154101. 81 Wang Q Q. Effects of thermoelectric properties of β-Zn4Sb3 by rare earth doping. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2013(in Chinese). 王晴晴. 稀土元素掺杂对β-Zn4Sb3热电性能的影响. 博士学位论文, 中国科学院大学, 2013. 82 Ren B, Liu M, Li X, et al. Journal of Materials Chemistry A, 2015, 3(22), 11768. 83 Zou T H, Xie W J, Qin X Y, et al. Journal of Materiomics, 2016, 2(3), 273. 84 Palazzi M, Carcaly C, Flahaut T J. Journal of Solid State Chemistry, 1980, 35(2), 150. 85 Ueda K, Takafuji K, Hiramatsu H, et al. Chemistry of Materials, 2003, 15(19), 3692. 86 Natarajan A R, Ponvijayakanthan L, Gupta M K, et al. Physical Review Materials, 2023, 7(2), 025405. 87 Wang N, Li M, Xiao H, et al. Physical Review Applied, 2020, 13(2), 024038. 88 Einhorn M, Wililamson B A D, Scanlon D O. Journal of Materials Che-mistry A, 2020, 8(16), 7914. 89 Wollesen P, Kaiser J W, Jietschko W. Zeitschrift für Naturforschung B, 1997, 52(12), 1467. 90 Takano Y, Komatsuzaki S, Komasaki H, et al. Journal of Alloys and Compounds, 2008, 451(1-2), 467. 91 Hua Y. Synthesis and thermoelectric properties of Lu and Ce doped modified nanometer bismuth telluride based thermoelectric materials. Master’s Thesis, Nan Chang Institute of Technology, China, 2023(in Chinese). 华瑶. Lu、Ce掺杂改性纳米碲化铋基热电材料的制备及热电性能研究. 硕士学位论文, 南昌工程学院, 2023. 92 Liu J, Li Y K, Wang L G. Journal of Functional Materials, 2024, 55(3), 3113(in Chinese). 刘静, 李云凯, 王丽阁. 功能材料, 2024, 55(3), 3113. 93 Kabir R, Zhang T, Donelson R,et al. Physica Status Solid A, 2014, 211(5), 1200. |
|
|
|