SPACE LUBRICATING MATERIALS |
|
|
|
|
|
Microstructure and Vacuum Tribological Properties of Metal Doped MoS2 Composite Films |
ZHENG Yugang1, GOU Shining1, FENG Xingguo1, WANG Keliang1, ZHAO Meng1, ZHANG Kaifeng1, ZHOU Hui1,*, LI Lin2,*
|
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China 2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China |
|
|
Abstract MoS2, MoS2-Ti, MoS2-Ag and MoS2-(Ti+Ag) films were deposited on Si wafers and 9Cr18 steel using unbalanced magnetron sputtering technology. A comparative analysis of these four films was subsequently conducted. The films exhibit granular surface morphology and columnar structure in cross-section. Doping with Ti and Ag significantly enhances films compactness, while Ti doping results in peak broadening, indicating refined grain size. The mechanical property tests demonstrate that both Ti doping and (Ti+Ag) co-doping significantly improve film hardness and adhesion. Compared to pure MoS2 films, hardness increases by factors of 5.9 and 5.1, respectively, and adhesion increases by 3.5 times and 3.2 times. Vacuum tribological tests reveal that Ti-doped and (Ti+Ag)-co-doped films significantly outperform pure MoS2 films (wear rate:1.63×10-15 m3/(N·m)) in wear resistance. The MoS2-(Ti+Ag) film exhibits a wear rate of 0.9×10-17m3/(N·m), representing a two-order-of-magnitude reduction and demonstrating superior tribological performance. This study provides a theoretical basis and experimental data for improving the vacuum tribological properties of metal doped MoS2 composite films.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Feng X G, Zheng Y G, Wang K L, et al. Vacuum and Cryogenics, 2024, 30(1), 31(in Chinese).
冯兴国, 郑玉刚, 汪科良, 等. 真空与低温, 2024, 30(1), 31.
2 Zeng C, Pu J, Wang H, et al. Ceramics International, 2020, 46(9), 13774.
3 Gao X M, Hu M, Sun J Y, et al. Vacuum, 2017, 144, 72.
4 Hilton M R, Fleischauer P D. Surface and Coatings Technology, 1992, 54, 435.
5 Voumard P, Savan A, Pflüger E. Lubrication Science, 2001, 13(2), 135.
6 Chai L Q, Zhang X Q, Xu J, et al. Tribology, 2016, 36(1), 1(in Chinese).
柴利强, 张晓琴, 许佼, 等. 摩擦学学报, 2016, 36(1), 1.
7 Guan X Y, Wang L P, Zhang G A, et al. Tribology, 2015, 35(3), 259(in Chinese).
关晓艳, 王立平, 张广安, 等. 摩擦学学报, 2015, 35(3), 259.
8 Renevier N M, Fox V C, Teer D G, et al. Surface and Coatings Technology, 2000, 127(1), 24.
9 Bülbül F, Efeoğluİ, Arslan E. Applied Surface Science, 2007, 253(9), 4415.
10 Zhou H, Zheng J, Wen Q P, et al. Physics Procedia, 2011, 18, 234.
11 Wang X, Xing Y M, Ma S L, et al. Surface and Coatings Technology, 2007, 201(9-11), 5290.
12 Qin X P, Ke P L, Wang A Y, et al. Surface and Coatings Technology, 2013, 228, 275.
13 Bertóti I, Mohai M, Renevier N M, et al. Surface and Coatings Technology, 2000, 125(1-3), 173.
14 Stoyanov P, Strauss H W, Chromik R R. Wear, 2012, 274, 149.
15 Banerji A, Bhowmick S, Alpas A T. Surface and Coatings Technology, 2017, 314, 2.
16 Su Y, Zheng S X. Lubrication Engineering, 2023, 48(2), 154(in Chinese).
苏煜, 郑韶先. 润滑与密封, 2023, 48(2), 154.
17 Wang X P, Xiao J K, Zhang L, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(10), 2811(in Chinese).
王新平, 肖金坤, 张雷, 等. 中国有色金属学报, 2012, 22(10), 2811.
18 Li S, Feng Y, Yang X T, et al. Rare Metal Materials and Engineering, 2009, 38(11), 1881.
19 Shen Z H, Hu D F. Materials Protection, 2021, 54(4), 123(in Chinese).
申祖辉, 胡东方. 材料保护, 2021, 54(4), 123.
20 Du J T, Tong R T, Wang Y F, et al. Tribology, 2022, 42(4), 669(in Chinese).
杜晶涛, 佟瑞庭, 王云峰, 等. 摩擦学学报, 2022, 42(4), 669.
21 Kao W H. Wear, 2005, 258(5-6), 812.
22 Su Y L, Kao W H. Tribology International, 2003, 36(1), 11.
23 Wei C B, Ou W M, Hou H J, et al. Surface Technology, 2017, 46(10), 135(in Chinese).
韦春贝, 欧文敏, 侯惠君, 等. 表面技术, 2017, 46(10), 135.
24 Ou W M, Wei C B, Dai M J, et al. Surface Technology, 2017, 46(1), 93(in Chinese).
欧文敏, 韦春贝, 代明江, 等. 表面技术, 2017, 46(1), 93.
25 Zhao J L, Deng J X, Song W L. Tribology, 2009, 29(3), 238(in Chinese).
赵金龙, 邓建新, 宋文龙. 摩擦学学报, 2009, 29(3), 238.
26 Arslan E, Baran Ö, Efeoglu I, et al. Surface and Coatings Technology, 2008, 202(11), 2344.
27 Li H, Zhang G A, Wang L P. Wear, 2016, 350, 1.
28 Wahl K J, Dunn D N, Singer I L. Wear, 1999, 230(2), 175.
29 Stoyanov P, Gupta S, Chromik R R, et al. Tribology International, 2012, 52, 144.
30 Geng Z R, Li X, Zhang G A, et al. Tribology, 2016, 36(4), 481(in Chinese).
耿中荣, 李霞, 张广安, 等. 摩擦学学报, 2016, 36(4), 481.
31 Pimentel J V, Polcar T, Cavaleiro A. Surface and Coatings Technology, 2011, 205(10), 3274.
32 Gu L, Ke P L, Zou Y S, et al. Applied Surface Science, 2015, 331, 66.
33 Teer D G. Wear, 2001, 251(1-12), 1068.
34 Renevier N M, Hamphire J, Fox V C, et al. Surface and Coatings Technology, 2001, 142, 67.
35 Zabinski J S, Donley M S, Walck S D, et al. Tribology Transactions, 1995, 38(4), 894.
36 Xu S S, Gao X M, Hu M, et al. Surface and Coatings Technology, 2014, 238, 197. |
|
|
|