SPACE LUBRICATING MATERIALS |
|
|
|
|
|
Research Progress on Super-lubricating Films and Prospect of Its Astronautical Applications |
WANG Keliang1, XING Zhenhua1, REN Shouzhi2, ZHAO Meng1, ZHOU Hui1, ZHANG Kaifeng1,*, CHENG Zhizhong2,*, FENG Xingguo1, CAO Zhen1, HE Ying1
|
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China 2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China |
|
|
Abstract Solid lubricating films, characterized by their non-volatility and broad temperature adaptability, have emerged as critical components ensuring long-term reliability of space mechanisms under extreme environments. Although the superlubricating technology has not reached the theoretical frictionless limit, it has shown remarkable technical advantages in the aerospace field from basic research to macro-scale breakthroughs. This study systematically investigates the superlubricity mechanisms of transition metal dichalcogenides (TMDs) and hydrogenated diamond-like carbon (H-DLC) films under peculiar aerospace operating conditions, and clarifies the critical scientific obstacles and technical challenges for achieving macro-scale breakthroughs. The realization of superlubricity in TMDs necessitates intrinsic conditions including atomically clean interfaces, van der Waals-dominated interaction mechanisms and incommensurate contact configurations, which can be achieved by innovative strategies such as supersurface heterointerface engineering and multilayered gradient architecture. The vacuum superlubricity of H-DLC relies on hydrogen passivation, and the failure problem caused by hydrogen desorption can be solved through hydrogen content regulation, element doping and multilayer composite structure design. It is suggested that the application of superlubricating films in aerospace engineering should be promoted in stages. At the initial stage, superlubricating films can be used to verify disposable mechanisms, such as compression and release mechanisms and expansion mechanisms. Gradually expanding to continuous operation mechanisms, and promoting the new generation of spacecraft with superlubrication technology as the core through continuous iteration.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Fusaro L. In:2001 Annual Meeting. Orlando, Florida, 2001. 2 Roberts E W. Journal of Physics D:Applied Physics, 2012, 45(50), 503001. 3 Hirano M, Shinjo K. Wear, 1993, 168(1-2), 121. 4 Li JJ, Luo J B. Chinese Journal of Nature, 2014, 36(4), 248(in Chinese) . 李津津, 雒建斌. 自然杂志, 2014, 36(4), 248. 5 Liu X G, Zhang K F, Zhou H, et al. Materials Reports, 2021, 35(9), 9150(in Chinese). 刘兴光, 张凯锋, 周晖, 等. 材料导报, 2021, 35(9), 9150. 6 Cihan E, İpek S, Durgun E, et al. Nature Communications, 2016, 7(1), 12055. 7 Spear J C, Ewers B W, Batteas J D. Nano Today, 2015, 10(3), 301. 8 Liu Y, Song A, Xu Z, et al. ACS Nano, 2018, 12(8), 7638. 9 Miyoshi K. Solid Lubricants and Coatings for Extreme Environments:State-of-the-Art Survey. 2007. 10 Li H, Ju S, Ji L, et al. Surface Science and Technology, 2023, 1(1), 27. 11 Krause O, Müller F, Scheithauer S, et al. In:Proc. 13th ESMATS, Vienna, Austria, 2009. 12 Ma G Z, Xu B S, Wang H D, et al. Materials Reports, 2010(1), 68(in Chinese). 马国政, 徐滨士, 王海斗, 等. 材料导报, 2010(1), 68. 13 Yu D Y, Weng L J. Ou Y J L. Journal of Tribology, 1996, 16(1), 89(in Chinese). 于德洋, 翁立军. 摩擦学学报, 1996, 16(1), 89. 14 Robertson J. Materials Science and Engineering:R:Reports, 2002, 37(4-6), 129. 15 Erdemir A, Donnet C. T. Journal of Physics D:Applied Physics, 2006, 39(18), 311. 16 Vanhulsel A, Velasco F, Jacobs R, et al. Tribology International, 2007, 40(7), 1186. 17 Zhou H, Zheng J, Sang R P, et al. In:14th European Space Mechanisms and Tribology Symposium. Germany, 2011. 18 Lince J R. Lubricants, 2020, 8(7), 74. 19 Roberts E W. Tribology International, 1990, 23(2), 95. 20 Buttery M. In:Proceedings of the 40th Aerospace Mechanisms Symposium. Warrington, UK, 2010. 21 Batista J, Vise J, Young K. In:In Proceedings of the 28th Aerospace Mechanisms Symposium. Cleveland, OH, USA, 1994. 22 Donnet C, Le Mogne Th, Martin J M. Surface and Coatings Technology, 1993, 62(1-3), 406. 23 Martin J M, Donnet C, Le Mogne T, et al. Physical Review B, 1993, 48(14), 10583. 24 Martin J M, Pascal H, Donnet C, et al. Surface and Coatings Technology, 1994, 68-69, 427. 25 Hirano M, Shinjo K. Physical Review B, 1990, 41(17), 11837. 26 Sokoloff J B. Physical Review B, 1990, 42(1), 760. 27 Hod O, Meyer E, Zheng Q, et al. Nature, 2018, 563(7732), 485. 28 Huang K, Qin H, Zhang S, et al. Advanced Functional Materials, 2022, 32(35), 2204209. 29 Belim S V, Tikhomirov I V, Bychkov I V. Coatings, 2022, 12(6), 853. 30 Donnet C, Martin J M, Le Mogne Th, et al. Tribology International, 1996, 29(2), 123. 31 Ren S, Cui M, Martini A, et al. Cell Reports Physical Science, 2023, 4(5), 101390. 32 Shi Y, Zhang J, Pu J, et al. Composites Part B:Engineering, 2023, 250, 110460. 33 Dong C, Jiang D, Fu Y, et al. Friction, 2024, 12(1), 52. 34 Tian J, Jin J, Zhang C, et al. Applied Surface Science, 2022, 578, 152068. 35 Sun L, Gao K, Jia Q, et al. Diamond and Related Materials, 2021, 117, 108479. 36 Li P, Yi Wang W, Zou C, et al. Applied Surface Science, 2023, 613, 155760. 37 Büch H, Rossi A, Forti S, et al. Nano Research, 2018, 11(11), 5946. 38 Erdemir A, Eryilmaz O L, Nilufer I B, et al. Diamond and Related Materials, 2000, 9(3-6), 632. 39 Donnet C, Fontaine J, Grill A, et al. Tribology Letters, 2001, 9(3/4), 137. 40 Erdemir A. Surface and Coatings Technology, 2001, 146-147, 292. 41 Hayashi K, Tezuka K, Ozawa N, et al. The Journal of Physical Chemistry C, 2011, 115(46), 22981. 42 Piotrowski P L, Cannara R J, Gao G, et al. Journal of Adhesion Science and Technology, 2010, 24(15-16), 2471. 43 Guo H, Qi Y, Li X. Applied Physics Letters, 2008, 92(24), 241921. 44 Erdemir A, Eryilmaz O. Friction, 2014, 2(2), 140. 45 Liu Y, Yu B, Cao Z, et al. Applied Surface Science, 2018, 439, 976. 46 Jang S, Chen Z, Kim S H. Friction, 2025, 13(1), 9440995. 47 Erdemir A, Eryilmaz O L, Fenske G. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2000, 18(4), 1987. 48 Härtwig F, Lorenz L, Makowski S, et al. Materials, 2022, 15(7), 2534. 49 Andersson J, Erck R A, Erdemir A. Surface and Coatings Technology, 2003, 163-164, 535. 50 Fontaine J, Donnet C, Grill A, et al. Surface and Coatings Technology, 2001, 146-147, 286. 51 Yu Q, Chen X, Zhang C, et al. Friction, 2022, 10(12), 1967. 52 Yu Q, Chen X, Zhang C, et al. Carbon, 2022, 196, 499. 53 Cui L, Zhou H, Zhang K, et al. Tribology International, 2018, 117, 107. 54 Fontaine J, Loubet J L, Mogne T Le, et al. Tribology Letters, 2004, 17(4), 709. 55 Moolsradoo N, Watanabe S. Diamond and Related Materials, 2010, 19(5-6), 525. 56 Zhang R, Zhao J, Yang Y, et al. Current Applied Physics, 2018, 18(3), 317. 57 Freyman C A, Chen Y, Chung Y W. Surface and Coatings Technology, 2006, 201(1-2), 164. 58 Liu X, Yang J, Hao J, et al. Advanced Materials, 2012, 24(34), 4614. 59 Liu X, Yang J, Hao J, et al. Surface and Coatings Technology, 2012, 206(19-20), 4119. 60 Wu Y, Li H, Ji L, et al. Tribology Letters, 2013, 52(3), 371. 61 Kato K, Umehara N, Adachi K. Wear, 2003, 254(11), 1062. 62 Zhao F, Li H, Ji L, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2016, 34(3), 031504. 63 Jiang J, Hao J, Wang P, et al. Journal of Applied Physics, 2010, 108(3), 033510. 64 Chen X, Zhang C, Kato T, et al. Nature Communications, 2017, 8(1), 1675. 65 Zhang C, Deng W, Xu J, et al. Thin Solid Films, 2022, 753, 139275. 66 Wu Y, Li H, Ji L, et al. Journal of Physics D:Applied Physics, 2013, 46(42), 425301. 67 Chen Y, Li H, Su F, et al. Tribology International, 2023, 189, 108988. 68 Wu Y, Li H, Ji L, et al. Surface and Coatings Technology, 2013, 236, 438. 69 Li X Y. Design, preparation and simulation space application of MoS2-C composite films. Master's Thesis, Northwest Minzu University, China, 2023(in Chinese). 李煊禹. MoS2-C复合薄膜的设计制备及模拟空间应用研究. 硕士学位论文, 西北民族大学, 2023. 70 Cheng Z, Wei X, Gao K, et al. Surface and Interface Analysis, 2023, 55(10), 730. 71 Yokota K, Tagawa M, Kitamura A, et al. Applied Surface Science, 2009, 255(13-14), 6710. 72 Shi P, Zhang D, He Z, et al. Diamond and Related Materials, 2024, 144, 110997. |
|
|
|