SPACE LUBRICATING MATERIALS |
|
|
|
|
|
Effects of Acetylene Flow Rate on the Structure,Mechanical Properties and Atmospheric Tribological Performances of ta-C:H Films |
LI Jian1, HAO Hong1, ZHOU Zhiyong2, WANG Keliang1, ZHENG Yugang1, ZHAO Meng1, ZHOU Hui1,*, ZHANG Kaifeng1,*
|
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China 2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China |
|
|
Abstract The tetrahedral hydrogenated amorphous carbon (ta-C:H) films were prepared by pulsed laser-induced cathodic vacuum arc (PLICVA) technique in acetylene atmosphere, and the effects of acetylene flow rate (0—40 sccm) on the structure, mechanical properties and atmospheric tribological performances of the films were systematically investigated. The results show that with increasing acetylene flow rate, a reduction in the density of large-size particles on the film surface is observed, accompanied by effective improvement of its quality. The sp3 C content shows a gradient decreasing trend, together with a decline of nanohardness from 57.95 GPa for ta-C films (0 sccm acetylene flow) to 44.71 GPa for ta-C:H films (40 sccm acetylene flow). Conversely, the film-substrate adhesion force demonstrates an initial increase followed by subsequent decrease. Atmospheric tribological tests reveal a progressive decrease in friction coefficient and increase in wear rate with increasing acetylene flow rate. Under a load of 5 N, the acetylene-free ta-C film exhibits a friction coefficient of 0.156 and a low wear rate of 3.22×10-16 m3·N-1·m-1, whereas the ta-C:H film deposited with 40 sccm acetylene flow shows a reduced friction coefficient of 0.128 but an elevated wear rate of 7.92×10-16 m3·N-1·m-1. Mechanism analysis reveals that hydrogen incorporation enhances dangling bond passivation, which takes synergistic lubricating effects with transfer film formation and sliding-induced interfacial graphitization, collectively reducing the friction coefficient. This study may provide critical experimental and theoretical insights for optimizing ta-C:H films.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Silva S R P, Xu S, Tay B K, et al. Thin Solid Films, 1996, 290, 317. 2 Zavaleyev V, Walkowicz J, Kuznetsova T, et al. Thin Solid Films, 2017, 638, 153. 3 Rajak D K, Kumar A, Behera A, et al. Applied Sciences, 2021, 11(10), 4445. 4 Neuville S. QScience Connect, 2014, 1, 8. 5 Wang L, Liu Y, Chen H, et al. Coatings, 2022, 12(2), 224. 6 Xue Q, Wang L. Diamond-like carbon-based film materials, Science Press, China, 2012, pp. 302 (in Chinese). 薛群基, 王立平. 类金刚石碳基薄膜材料, 科学出版社, 2012, pp. 302. 7 Zhang R, Yasuda D, Umehara N, et al. In:Conference Proceedings of ITS-IFToMM 2024. Springer Cham, US, 2024. pp. 149. 8 Braic M, Vladescu A, Balaceanu M, et al. Applied Surface Science, 2017, 400, 318. 9 Sohbatzadeh F, Safari R, Etaati G R, et al. Superlattices and Microstructures, 2016, 89, 231. 10 Priyanto B, Saleh M, Tunmee S, et al. Materials Science Forum, 2019, 966, 95. 11 Wang X, Zhao T, Sun F, et al. Diamond and Related Materials, 2015, 54, 26. 12 Lee K R, Baik Y J, Eun K Y, et al. Diamond and Related Materials, 1994, 3(10), 1230. 13 Yang Q, Yang S, Li Y S, et al. Diamond and Related Materials, 2007, 16(4-7), 730. 14 Sun Z, Xu S, Ostrikov K N. Diamond and Related Materials, 2002, 11(1), 92. 15 Capote G, Prioli R, Jardim P M, et al. Journal of Non-Crystalline Solids, 2004, 338, 503. 16 Popescu A, Stan G, Duta L, et al. Materials, 2015, 8(6), 3284. 17 Weiler M, Sattel S, Jung K, et al. Applied Physics Letters, 1994, 64(21), 2797. 18 Weiler M, Sattel S, Giessen T, et al. Physical Review B, 1996, 53(3), 1594. 19 Feng L, Li J, He Z, et al. Diamond and Related Materials, 2024, 142, 110854. 20 Manjunath K, Achutarao B, Harish D V N, et al. Transactions of the Indian Ceramic Society, 2023, 82(4), 295. 21 Li H, Sun P, Cheng D. Coatings, 2021, 11(7), 815. 22 Zimmermann B, Fietzke F, Klostermann H, et al. Surface and Coatings Technology, 2012, 212, 67. 23 Shen Y, Luo J, Liao B, et al. Diamond and Related Materials, 2022, 125, 108985. 24 Srisantirut T, Pengchan W. Key Engineering Materials, 2019, 814, 47. 25 Song J, Tian H, Li J, et al. Vacuum, 2024, 221, 112899. 26 Li J, Chae H. Korean Journal of Chemical Engineering, 2023, 40(6), 1268. 27 Lee S, Yoon S H, Kim J K, et al. Japanese Journal of Applied Physics, 2011, 50(1S1), 01AH01. 28 Fang T, Yamaki K, Koga K, et al. Thin Solid Films, 2018, 660, 891. 29 Salek A G, Le P Y, Partridge J G, et al. Applied Physics Letters, 2023, 122(18), 181904. 30 Cui W G, Lai Q B, Zhang L, et al. Surface and Coatings Technology, 2010, 205(7), 1995. 31 Wu C H, Tamor M A, Potter T J, et al. Journal of Applied Physics, 1990, 68(9), 4825. 32 Sumant A V, Gilbert P U P A, Grierson D S, et al. Diamond and Related Materials, 2007, 16(4-7), 718. 33 Ryaguzov A P, Nemkayeva R R, Alpysbaeva B E, et al. Journal of Physics:Conference Series, 2016, 751(1), 012027. 34 Erdemir A. Surface and Coatings Technology, 2001, 146, 292. 35 Erdemir A, Eryilmaz O L, Nilufer I B, et al. Diamond and Related Materials, 2000, 9(3-6), 632. 36 Feng X, Zheng Y, Wang K, et al. Surface and Interface Analysis, 2023, 55(10), 763. 37 Wu J B, Chen C Y, Shin C T, et al. Thin Solid Films, 2008, 517(3), 1141. 38 Wang K, Zhou H, Zhang K, et al. Vacuum, 2022, 206, 111555. 39 Jacob W. Thin Solid Films, 1998, 326(1-2), 1. 40 Wang L, Li L, Kuang X. Surface and Coatings Technology, 2018, 352, 33. 41 Ghadai R K, Kalita K, Mondal S C, et al. Materials and Manufacturing Processes, 2018, 33(16), 1905. 42 Robertson J. Materials Science and Engineering R, 2002, 37(4-6), 129. 43 Gilkes K W R, Prawer S, Nugent K W, et al. Journal of Applied Physics, 2000, 87(10), 7283. 44 Liu F X, Yao K L, Liu Z L. Diamond and Related Materials, 2007, 16(9), 1746. 45 Tay B K, Shi X, Liu E J, et al. Thin Solid Films, 1999, 346(1-2), 155. 46 Tay B K, Shi X, Liu E J, et al. Diamond and Related Materials, 1999, 8(7), 1328. 47 Zhang P, Tay B K, Lau S P. Diamond and Related Materials, 2003, 12(10-11), 2093. 48 Lifshitz Y, Kasi S R, Rabalais J W. Physical Review Letters, 1989, 62(11), 1290. 49 Robertson J. Diamond and Related Materials, 1993, 2(5-7), 984. 50 Davis C A. Thin Solid Films, 1993, 226(1), 30. 51 Lascovich J C, Scaglione S. Applied Surface Science, 1994, 78(1), 17. 52 Zhou K, Ke P, Li X, et al. Applied Surface Science, 2015, 329, 281. 53 Zhang H, Liu L, Wang Y, et al. Journal of Materials Science and Technology, 2007, 23(4), 491. 54 Kaindl R, Jakopic G, Resel R, et al. Materials Today Proceedings, 2015, 2(8), 4247. 55 Donnet C. Surface and Coatings Technology, 1998, 100, 180. 56 Liu H, Tanaka A, Umeda K. Thin Solid Films, 1999, 346(1-2), 162. 57 Su C, Lin J C. Surface Science, 1998, 406(1-3), 149. 58 Liu Y, Meletis E I. Journal of Materials Science, 1997, 32, 3491. 59 Huang L, Yuan J, Li C, et al. Surface and Coatings Technology, 2018, 353, 163. 60 Liu Y, Erdemir A, Meletis E I. Surface and Coatings Technology, 1996, 86, 564. 61 Fink J, Müller-Heinzerling T, Pflüger J, et al. Solid State Communications, 1983, 47(9), 687. 62 Racine B, Benlahsen M, Zellama K, et al. Applied Physics Letters, 1999, 75(22), 3479. 63 Leyland A, Matthews A. Wear, 2000, 246(1-2), 1. |
|
|
|