| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Study on Room Temperature Deformation Behavior of Magnesium-Bismuth Binary Alloy |
| WAN Yuhui1, SHI Fengjian2,*, HUO Qinghuan3, SONG Hongquan4, SU Hang5,*, LU Qingsong6, KUANG Jie1, LIU Gang1, ZHANG Jinyu1, SUN Jun1
|
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China 3 School of Materials Science and Engineering, Central South University, Changsha 410083, China 4 School of Physical and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, China 5 CNPC Tubular Goods Research Institute, Xi'an 710077, China 6 Zhejiang Yinlun Machinery Co., Ltd., Tiantai 317200, Zhejiang, China |
|
|
|
|
Abstract Due to the high thermal stability of its second phase, Mg-Bi alloy have attracted some attention in the field of magnesium alloys research in recent years. In this work, quasi-in-situ tensile tests based on scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) were conducted, combined with crystal plasticity finite element simulation and first-principles calculations to explore the room-temperature plastic deformation behavior of Mg-Bi binary alloy. The results show that, under the condition of similar grain size and texture, Mg-Bi alloy exhibits superior room-temperature mechanical properties matching compared to pure Mg. Analysis indicate it is mainly due to the addition of element Bi, which reduce the generalized stacking fault energy of non-basal slip systems in the material and increase the activity of prismatic slip. This change causes the Mg-Bi alloy's strength increasing by 1.4 times compared to pure Mg's while maintaining almost the same elongation rate.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Froes F H, Eliezer D, Aghion E. Journal of Operations Management, 1998, 50, 30. 2 Yoo M H. Metallurgical Transactions A, 1981, 12(3), 409. 3 Khosravani A, Fullwood D T, Adams B L, et al. Acta Materialia, 2015, 100, 202. 4 Imandoust A, Barrett C D, Al-Samman T, et al. Journal of Materials Science, 2017, 52, 1. 5 Sandlöbes S, Zaefferer S, Schestakow I, et al. Acta Materialia, 2011, 59, 429. 6 Sandlöbes S, Friák M, Zaefferer S, et al. Acta Materialia, 2012, 60, 3011. 7 Kim K H, Wang J H, Jang H S, et al. Materials Science and Engineering A, 2018, 715, 266. 8 Xu J, Guan B, Xin Y C, et al. International Journal of Plasticity, 2023, 170, 103763. 9 Bu Y, Li Z, Liu J, et al. Physical Review Letters, 2019, 122, 075502. 10 Ogawa Y, Singh A, Somekawa H. Scripta Materialia, 2022, 218, 114830. 11 Sandlöbes S, Friák M, Zaefferer S, et al. Acta Materialia, 2012, 60, 30111. 12 Sandlöbes S, Pei Z, Friák M, et al. Acta Materialia, 2014, 70, 92. 13 Wu Z, Ahmad R, Yin B, et al. Science, 2018, 359, 447. 14 Kuang J, Thaddeus S E L, Stephen R N, et al. International Journal of Plasticity, 2016, 87, 86. 15 Go J, Lee J U, Yu H, et al. Journal of Materials Science & Technology, 2020, 44, 62. 16 Liu M J, Sun M, Li J H, et al. Nonferrous Metal Materials and Engineering, 2020, 41(4), 39. 17 Cha J W, Jin S C, Jung J G, et al. Journal of Magnesium and Alloys, 2022, 10, 2833. 18 Xiao Z, Xu S, Huang W, et al. Journal of Materials Science & Technology, 2024, 201, 166. 19 Sasaki T T, Ohkubo T, Hono K. Acta Materialia, 2009, 57, 3529. 20 Yu H, Fan S D, Meng S J, et al. Journal of Magnesium and Alloys, 2021, 9, 983. 21 Somekawa H, Singh A, Sahara R, et al. Scientific Reports, 2018, 8(1), 104406. 22 Zhang Y Q, Cheng W L, Yu H, et al. Journal of Materials Science & Technology, 2022, 105, 274. 23 Liu S, Xia D, Yang H, et al. International Journal of Plasticity, 2022, 157, 103371. 24 Sun J, Jina L, Dong J, et al. International Journal of Plasticity, 2019, 123, 121. 25 Zhou B, Li Y, Wang L, et al. Acta Materialia, 2022, 227, 117662. 26 Zhou B, Wang L, Jin P, et al. International Journal of Plasticity, 2020, 128, 102669. 27 Yaghoobi M, Ganesan S, Sundar S, et al. Computational Materials Science, 2019, 169, 109078. 28 Kuang J, Zhang D, Zhang Y, et al. Scripta Materialia, 2024, 242, 115903. 29 Kuang J, Zhao X, Du X, et al. Materials Research Letters, 2023, 11(6), 430. 30 Choi S W, Won J W, Lee S, et al. Materials Science and Engineering A, 2018, 738, 75. 31 Kumar A, Kumar M A, Beyerlein I J. Scientific Reports, 2017, 7(1), 8932. 32 Kwasniak P, Garbacz H, Kurzydlowski K J. Acta Materialia, 2016, 102, 304. 33 Zhu G M, Wang L Y, Zhou H, et al. International Journal of Plasticity, 2019, 120, 164. 34 Pei Z, Li R. Computational Materials Science, 2017, 133, 1. 35 Muzyk M, Pakiela Z, Kurzydlowski K. Scripta Materialia, 2012, 66(5), 219. |
|
|
|