| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Wire Arc Additive Manufacturing Technology |
| ZHANG Lijiao1,*, ZHU Hongbin1, QU Hua2, WANG Zhenmin3
|
1 CRRC Industry Research Institute Co.,Ltd., Beijing 100170, China 2 Qingdao Technology Innovation Center for National High-speed Trains, Qingdao 266111, Shandong, China 3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China |
|
|
|
|
Abstract Wire arc additive manufacturing has become an advanced forming technology for large metal parts for its advantages, such as high proces-sing efficiency, strong environmental adaptability, low processing cost, simple equipment operation and maintenance, which plays an important role in promoting the high-quality development of new materials. However, the process of wire arc additive manufacturing involves the mass and heat transfer of wire arc, dynamic behavior of deposited metal, and alloying control of additive parts, which make it difficult to control the formation and quality. This paper summarizes the research progress of wire arc additive manufacturing domestically and abroad from the aspects of technology classification, hardware system, software system, formation control and quality improvement, and sorts out the control strategy in formation and properties of wire arc additive parts systematically, and looks forward to its future development trend, which aims to provide useful reference for the subsequent research and engineering application in this field.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Dai S, Zhu K Y, Wang S H, et al. Journal of Manufacturing Processes, 2010, 141, 789. 2 Lu B H, Li D C. Machine Building and Automation, 2013, 42(4), 1(in Chinese). 卢秉恒, 李涤尘. 机械制造与自动化, 2013, 42(4), 1. 3 Wang S S, Chen X J, Han X L, et al. Pharmaceutics, 2023, 15(2), 416. 4 Madhavadas V, Srivastava D, Chadha U, et al. Cirp Journal of Manufacturing Science and Technology, 2022, 39, 18. 5 Manapat J Z, Chen Q Y, Ye P, et al. Macromolecular Materials and Engineering, 2017, 302(9). 6 Kussmauk K, Schoch F W, Luckow H. Welding Journal, 1983, 9, 17. 7 Sarikaya M, Onler D B, Dagli S. Journal of Materials Research and Technology, 2024, 33, 5643. 8 Yadav A, Srivastava M, Jain P K. Structures, 2025, 72, 108228. 9 Zeng G, Han Z Y, Liang S J, et al. Materials China, 2014, 33(6), 376(in Chinese). 曾光, 韩志宇, 梁书锦, 等. 中国材料进展, 2014, 33(6), 376. 10 Pan Z X, Ding D H, Wu B T, et al. Transactions on Intelligent Welding Manufacturing, 2017, 3. 11 Wu B T, Pan Z X, Ding D H, et al. Journal of Manufacturing Processes, 2018, 35, 127. 12 Fu R, Tang S Y, Lu J P, et al. Materials and Design, 2021, 199, 109370. 13 Peng J, Liu Y B, Sun Q J, et al. Additive Manufacturing, 2021, 39, 101878. 14 Wang H J, Jiang W H, Quang J H, et al. Journal of Materials Processing Technology, 2004, 148(1), 93. 15 Ouyang J H, Wang H, Kovacevic R. Materials and Manufacturing Processes, 2002, 17(1), 103. 16 Ayarkwa K F, Williams S W, Ding J. Additive Manufacturing, 2017, 18, 186. 17 Huang Y M, Wu D, Zhang Z F, et al. Journal of Materials Processing Technology, 2017, 239, 92. 18 Wu B T, Ding D H, Pan Z X, et al. Journal of Materials Processing Technology, 2017, 250, 304. 19 Li Z X, Liu C M, Xu T Q, et al. Materials Science and Engineering: A, 2019, 743, 287. 20 Jandric Z, Labudovic M, Kovacevic R. International Journal of Machine Tools and Manufacture, 2004, 44(7-8), 785. 21 Bonaccorso F, Cantelli L, Muscato G. IEEE Transactions on Industrial Electronics, 2011, 58(8), 3126. 22 Tian Y, Ouyang B, Gontcharov A, et al. Journal of Alloys and Compounds, 2017, 694(15), 429. 23 Guo J, Zhou Y, Liu C, et al. Materials, 2016, 9, 823. 24 Takagi H, Sasahara H, Abe T, et al. Additive Manufacturing, 2018, 24, 498. 25 Martina F, Mehen J, Williams S W, et al. Journal of Materials Processing Technology, 2012, 212(6), 1377. 26 Li K, Klecka M A, Chen S, et al. Additive Manufacturing, 2021, 37, 101734. 27 Huang J K, Yang M H, Li T, et al. Journal of Shanghai Jiaotong University, 2016, 50(12), 1906(in Chinese). 黄健康, 杨茂鸿, 李挺, 等. 上海交通大学学报, 2016, 50(12), 1906. 28 Suarez A, Aldualur E, Veiga F, et al. Journal of Manufacturing Processes, 2021, 64, 188. 29 Xu F, Lv Y, Shu F, et al. Journal of Manufacturing Processes, 2013, 29(5), 480. 30 Gu J L, Bai J, Ding J L, et al. Journal of Materials Processing Technology, 2018, 262, 210. 31 Li F, Chen S, Shi J, et al. Applied Science, 2018, 8, 207. 32 Luo Y, Li J, Xu J, et al. Journal of Materials Processing Technology, 2018, 259, 353. 33 Zhang Y, Chen Y, Li P, et al. Journal of Materials Processing Technology, 2003, 135(2-3), 347. 34 Le V T, Mai D S, Paris H. Journal of Manufacturing Processes, 2021, 62, 18. 35 Scotti A, Ponomarev V, Lucas W. Journal of Materials Processing Technology, 2014, 214(11), 2488. 36 Xiong J, Lei Y, Li R. Applied Thermal Engineering, 2017, 126(5), 43. 37 Li Y, Su C, Zhu J. Results in Engineering, 2022, 13, 100330. 38 Shen C, Pan Z X, Ma Y, et al. Additive Manufacturing, 2015, 7, 20. 39 Abe T, Sasahara H. Precision Engineering, 2016, 45, 387. 40 Martina F, Ding J L, Williams S, et al. Additive Manufacturing, 2019, 25, 545. 41 Feng Y, Zhan B, He J, et al. Journal of Materials Processing Technology, 2018, 259, 206. 42 Wang Z M, Jiang D H, Wu J W, et al. Electric Welding Machine, 2020, 50(9), 186(in Chinese). 王振民, 江东航, 吴健文, 等. 电焊机, 2020, 50(9), 186. 43 Mituno M. Welding International, 2011, 25(8), 596. 44 Wang Z M, Wang Q, Wang P F, et al. Transactions of the China Welding Institution, 2016, 37(7), 49(in Chinese). 王振民, 汪倩, 王鹏飞, 等. 焊接学报, 2016, 37(7), 49. 45 Kang L F, Cai Y, Zhang Y L, et al. Hot Working Technology, 2017, 46(13), 84(in Chinese). 康凌风, 蔡艳, 张跃龙, 等. 热加工工艺, 2017, 46(13), 84. 46 Wu J W, Xu M J, Fan W Y, et al. Journal of Mechanical Engineering, 2020, 56(6), 102(in Chinese). 吴健文, 徐孟嘉, 范文艳, 等. 机械工程学报, 2020, 56(6), 102. 47 Wu J W. Research on the technology and mechanism of Inconel 718 nickel-based superalloy fast-frequency pulsed TIG welding based on large fast-frequency pulsed band waveform. Ph. D. Thesis, South China University of Technology, China, 2023(in Chinese). 吴健文. Inconel 718镍基高温合金大快频带波形快频脉冲TIG焊接工艺及机理研究. 博士学位论文, 华南理工大学, 2023. 48 Veiga F, Gil Del Val A, Suarez A, et al. Materials, 2020, 13, 766. 49 Hauser T, Reisch R T, Breese P P, et al. Additive Manufacturing, 2021, 41, 101993. 50 Liu L. Research on laser vision-based arc welding robot deflection correction system in additive manufacturing. Master’s Thesis, Xiangtan University, China, 2023(in Chinese). 刘恋. 基于激光视觉弧焊机器人增材制造过程纠偏系统研究. 硕士学位论文, 湘潭大学, 2023. 51 Kim D W, Choi J S, Nanji B O. International Journal of Production Research, 1998, 36(4), 957. 52 Dolgui A, Pashkevich A, Semkin K. In:The 6th IEEE International Symposium on Assembly and Task Planning. Montreal, 2005, pp. 1. 53 Gueta L B, Chiba R, Ota J, et al. In: IEEE International Conference on Robotics and Automation. Pasadena, 2008, pp. 2252. 54 Kapustka N, Harris I D. Welding Journal, 2014, 93, 32. 55 Ding D, Pan Z, Cuiuri D, et al. Robot and Computer-Integrated Manufacturing, 2016, 39, 32. 56 Zhang Y, Chen Y, Li P, et al. Journal of Materials Processing Technology, 2003, 135, 347. 57 Singh P, Dutta D. Journal of Computing and Information Science in Engineering, 2001, 1, 129. 58 Dunlavey M R. ACM Transactions on Graphics, 1983, 2, 264. 59 Park S C, Choi B K. Computer-Aided Design, 2000, 32, 17. 60 Rajan V, Srinivasan V, Tarabanis K A. Rapid Prototyping Journal, 2001, 7, 231. 61 Fariuki R, Koening T, Tarabanis K, et al. Journal of Manufacturing Systems, 1995, 14, 355. 62 Yang Y, Loh H, Fuh J, et al. Rapid Prototyping Journal, 2002, 8, 30. 63 Li H, Dong Z, Vickers gw. Computer-Aided Design, 1994, 26, 787. 64 Xiao Y, Chen X, Hu J N, et al. Welding and Joining, 2020(7), 42(in Chinese). 肖宇, 陈曦, 胡建南, 等, 焊接, 2020(7), 42. 65 Szymanik B, Psuj G, Hashemi M, et al. Materials, 2021, 14, 4168. 66 Wang Z, Chen H, Zhong Q, et al. The International Journal of Advanced Manufacturing Technology, 2022, 119, 5439. 67 Ding J Q. Research on characteristic of MAG weld pool visual image and control model in one-side welding with back formation weld. Master’s Thesis, Nanjing University of Science and Technology, China, 2010(in Chinese). 丁洁琼. MAG焊单面焊双面成形熔池视觉特征与控制模型研究. 硕士学位论文, 南京理工大学, 2010. 68 Fan H, Ravala N K, Wikle III H C, et al. Journal of Materials Processing Technology, 2003, 140(1-3), 668. 69 Zhan Q, Liang Y, Ding J, et al. The International Journal of Advanced Manufacturing Technology, 2016, 89, 755. 70 Xu Y, Yu H, Zhong J, et al. Journal of Materials Processing Technology, 2012, 212(8), 1654. 71 Xu Y, Fang G, Lv N A, et al. Robotics and Computer-Integrated Manufacturing, 2015, 32, 25. 72 Tang S, Wang G, Zhang H, et al. In: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium-an Additive Manufacturing Conference. Austin, 2017, pp. 1965. 73 Zhang Z, Yu H, Lv N A, et al. Journal of Materials Processing Technology, 2013, 213(7), 1146. 74 Pal K, Bhattacharya S, Pal S K. Journal of Materials Processing Technology, 2010, 210(10), 1397. 75 Rieder H. In: 1th European Conference on Non-destructive Testing. Prague, 2014. 76 Slotwinski J A. In: AIP Conference Proceedings. Baltimore, 2014, pp. 1197. 77 Pringle A M, Oberloier S, Petsiuk A L, et al. HardwareX, 2020, 8, e00137. 78 Wang P, Zhang H, Zhu H, et al. Journal of Materials Processing Technology, 2021, 288, 116895. 79 Lervag M, Sorensen C, Robertstad A, et al. Metals, 2020, 10, 272. 80 Wang S, Gu H, Wang W, et al. Metals, 2020, 10, 79. 81 Xiong J, Zhang G, Zhang W. International Journal of Advanced Manufacturing Technology, 2015, 80, 1767. 82 Esscobar P G, Gault R, Ridgway K. IOP Conference Series: Materials Science and Engineering, 2011, 26, 012002. 83 Zhou L Z, Liu S H, Ding D P, et al. China Mechanical Engineering, 2006, 17(24), 2622(in Chinese). 周龙早, 刘顺洪, 丁冬平, 等. 中国机械工程, 2006, 17(24), 2622. 84 Abe T, Kaneko J, Sasahara H, et al. Additive Manufacturing, 2020, 35, 101357. 85 Cong B Q, Su Y, Qi B J, et al. Aerospace Manufacturing Technology, 2016(3), 29(in Chinese). 从保强, 苏勇, 齐铂金, 等. 航天制造技术, 2016(3), 29. 86 Wang S, Gu H, Wang W, et al. Materials, 2020, 13(1), 73. 87 Yin Y H, Hu S S, Liu W L, et al. Ordnance Material Science and Engineering, 2008, 31(4), 55(in Chinese). 尹玉环, 胡绳荪, 刘望兰, 等. 兵器材料科学与工程, 2008, 31(4), 55. 88 Spencer J D, Dickens P M, Wykes C M. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1998, 212, 175. 89 Bo J Y, Wang J H, Lin S B, et al. Journal of Mechanical Engineering, 2016, 52(10), 97(in Chinese). 柏久阳, 王计辉, 林三宝, 等. 机械工程学报, 2016, 52(10), 97. 90 Ju H T. Synergistic optimization of additive manufacturing process and microstructure in titanium alloys based on CA-FE simulation. Ph. D. Thesis, University of Science and Technology of China, China, 2024(in Chinese). 鞠洪涛. 基于CA-FE模拟的钛合金增材制造工艺与组织协同优化研究. 博士学位论文, 中国科学技术大学, 2024. 91 Shen Z G. Research on TIG arc additive manufacturing process and strengthening mechanism of TiB2 particle reinforced 7075 aluminum matrix composites. Ph. D. Thesis, Taiyuan University of Science and Technology, China, 2024(in Chinese). 申志刚. TiB2颗粒增强的 7075 铝基复合材料 TIG 电弧增材制造工艺与强化机理研究. 博士学位论文, 太原科技大学, 2024. 92 Ke W C. Research on formation mechanisms and properties in wire arc additive manufacturing of NiTi shape memory alloys. Ph. D. Thesis, University of Electronic Science and Technology, China, 2023(in Chinese). 柯文超. NiTi形状记忆合金电弧增材制造及成形成性机理研究. 博士学位论文, 电子科技大学, 2023. 93 Kuang Y W, Hu J L, Liao H P, et al. Journal of Manufacturing Processes, 2024, 131, 52. 94 Liao H P, Wang Z M, Chi P, et al. Materials Science and Engineering: A, 2024, 898, 146365. 95 Liao H P, Kuang Y W, Zhou D H, et al. Construction and Building Materials, 2024, 457, 139510. 96 Liao H P, Wang Z M, Chi P, et al. Journal of Manufacturing Processes, 2024, 118, 389. |
|
|
|