| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Synthesis of Coal Fly Ash-based Zeolite X and Its Application for CO2 Capture and Separation |
| LI Kejia1, YIN Zhigang2, WANG Binbin3, LI Yao1,*
|
1 College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China 2 Rongsheng Alliance Guli New Energy Technology Co., Ltd., Beijing 100000, China 3 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China |
|
|
|
|
Abstract To slow down the increasing trend of global CO2 emissions, improve the utilization of low-quality natural gas, and reduce the negative impact of coal fly ash (CFA) on the environment, this work proposed to use fly ash as raw material to synthesize zeolite, and use the CFA-based zeolite as an adsorbent for CO2 capture and separation. Zeolite X was prepared by alkali-melting assisted hydrothermal method. The results show that the type and purity of zeolite X were greatly affected by the synthesis conditions and parameters, among which zeolite A is the main competitive phase. This work successfully synthesized octahedral zeolite X (SXZ) under the hydrothermal condition of 90 ℃ and 12 h, which showed specific surface area of 589 m2/g, crystallinity of 87.11%, and good thermal stability. The adsorption capacity of as-synthesized zeolite X on CO2 can reach 97% of that of commercial zeolite X (CXZ) and the gas separation selectivity of CO2/N2 and CO2/CH4 is higher than that of commercial X zeolites. This study provides an effective solution for environmental governance, energy utilization and high value-added utilization of solid waste.
|
|
Published: 25 December 2025
Online: 2025-12-17
|
|
|
|
|
1 Zhao J, Zhang W J, Shen D K, et al. Journal of the Energy Institute, 2023, 107, 101179. 2 Yuan B, Wu X F, Chen Y X, et al. Environmental Science & Technology, 2013, 47(10), 5474. 3 Rufford T E, Smart S, Watson G C Y, et al. Journal of Petroleum Science and Engineering, 2012, 94, 123. 4 Rashidi N A, Yusup S. Journal of CO2 Utilization, 2016, 13, 1. 5 Kishor R, Ghoshal A K. Industrial & Engineering Chemistry Research, 2017, 56(20), 6078. 6 Liu Z W, Zhang K, Wu Y, et al. Applied Surface Science, 2018, 440, 351. 7 de Aquino T F, Estevam S T, Viola V O, et al. Fuel, 2020, 276, 118143. 8 Zhang L, Huang Y N. Journal of Porous Materials, 2015, 22, 843. 9 Kokotailo G T, Lawton S L, Olson D H, et al. Nature, 1978, 272(5652), 437. 10 Wang C, Liu J Q, Yang J F, et al. Microporous and Mesoporous Materials, 2017, 242, 231. 11 Kim K J, Ahn H G. Microporous and Mesoporous Materials, 2012, 152, 78. 12 Yoldi M, Fuentes-Ordoñez E G, Korili S A, et al. Microporous and Mesoporous Materials, 2019, 287, 183. 13 Mohamed R M, Mkhalid I A, Barakat M A. Arabian Journal of Chemistry, 2015, 8(1), 48. 14 Melo C R, Riella H G, Kuhnen N C, et al. Materials Science and Engineering B:Advanced Functional Solid-State Materials, 2012, 177(4), 345. 15 Ren X Y, Xiao L F, Qu R Y, et al. RSC Advances, 2018, 8(73), 42200. 16 Verrecchia G, Cafiero L, de Caprariis B, et al. Fuel, 2020, 276, 118041. 17 Sivalingam S, Sen S. Applied Surface Science, 2018, 455, 903. 18 Ozdemir O D, Piskin S. Waste and Biomass Valorization, 2019, 10, 143. 19 Zhao S Y. Coal Science and Technology, 2008(4), 106 (in Chinese). 赵世永. 煤炭科学技术, 2008(4), 106. 20 Qiu S F, Wang Y, Cai M, et al. Environmental Protection of Chemical Industry, 2015, 35(6), 583 (in Chinese). 邱素芬, 王源, 蔡觅, 等. 化工环保, 2015, 35(6), 583. 21 Liu Y, Lyu H L, Zhang Z Y, et al. Journal of China Coal Society, 2009, 34(7), 966 (in Chinese). 刘艳, 吕海亮, 张振宇 等. 煤炭学报, 2009, 34(7), 966. 22 Guo H, Yang X H, Sheng W B, et al. Modern Chemical Research, 2020(15), 36 (in Chinese). 郭红, 杨先海, 盛文斌, 等. 当代化工研究, 2020(15), 36. 23 Bortolatto L B, Boca Santa R A A, Moreira J C, et al. Microporous and Mesoporous Materials, 2017, 248, 214. 24 GB/T 176-2017, Methods for chemical analysis of cement, Standards Press of China, China, 2017 (in Chinese). GB/T 176-2017, 水泥化学分析方法, 中国标准出版社, 2017. 25 Algieri C, Bernardo P, Barbieri G, et al. Microporous and Mesoporous Materials, 2009, 119(1-3), 129. 26 Reinoso D, Adrover M, Pedernera M. Ultrasonics Sonochemistry, 2018, 42, 303. 27 Sendesi S M T, Towfighi J, Keyvanloo K. Catalysis Communications, 2012, 27, 114. 28 Fan M H. Synthesis, ion exchange and adsorption performance of X zeolites with low Si/Al ratio. Master’s Thesis, Beijing University of Technology, China, 2014 (in Chinese). 范明辉. 低硅铝比 X 型分子筛的合成、离子交换及吸附性能研究. 硕士学位论文, 北京工业大学, 2014. 29 Barth-Wirsching U, Höller H. European Journal of Mineralogy, 1989, 1(4), 489. 30 Somerset V S, Petrik L F, White R A, et al. Fuel, 2005, 84(18), 2324. 31 Murali R S, Ismail A F, Rahman M A, et al. Separation and Purification Technology, 2014, 129, 1. 32 Tang W F, Han J P, Zhang S, et al. Polymer Composite, 2018, 39(10), 3461. 33 Beltrao-Nunes A P, Sennour R, Arus V A, et al. Journal of Alloys and Compounds, 2019, 778, 866. 34 Martin-Calvo A, Parra J B, Ania C O, et al. The Journal of Physical Chemistry C, 2014, 118(44), 25460. 35 Zhang P X, Wang J, Fan W, et al. Chemical Engineering Journal, 2019, 375, 121931. 36 Wang J, Krishna R, Yang J F, et al. Environmental Science & Technology, 2015, 49(15), 9364. 37 Zhang Y, Liu L, Zhang P X, et al. Chemical Engineering Journal, 2019, 355, 309. 38 Li Y, Wang Y G, Liu N, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 658, 130732. 39 Li Y, Liu N, Zhang T, et al. Energy, 2020, 211, 118561. 40 Li Y, Wang X, Cao M H. Journal of CO2 Utilization, 2018, 27, 204. 41 Li Y, Chen B Q, Gao Y R, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 677, 132350. 42 Li Y, Wang Y G, Chen B Q, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108847. 43 Li Y, Xu R, Wang B B, et al. Nanomaterials, 2019, 9(2), 266. 44 Li Y, Wang S Y, Wang B B, et al. Nanomaterials, 2020, 10(1), 174. 45 Li Y, Xu R, Wang X, et al. RSC Advances, 2018, 8(35), 19818. |
|
|
|